Bayesian Dose‐Finding in Phase I/II Clinical Trials Using Toxicity and Efficacy Odds Ratios

A Bayesian adaptive design is proposed for dose‐finding in phase I/II clinical trials to incorporate the bivariate outcomes, toxicity and efficacy, of a new treatment. Without specifying any parametric functional form for the drug dose–response curve, we jointly model the bivariate binary data to ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2006-09, Vol.62 (3), p.777-787
Hauptverfasser: Yin, Guosheng, Li, Yisheng, Ji, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 787
container_issue 3
container_start_page 777
container_title Biometrics
container_volume 62
creator Yin, Guosheng
Li, Yisheng
Ji, Yuan
description A Bayesian adaptive design is proposed for dose‐finding in phase I/II clinical trials to incorporate the bivariate outcomes, toxicity and efficacy, of a new treatment. Without specifying any parametric functional form for the drug dose–response curve, we jointly model the bivariate binary data to account for the correlation between toxicity and efficacy. After observing all the responses of each cohort of patients, the dosage for the next cohort is escalated, deescalated, or unchanged according to the proposed odds ratio criteria constructed from the posterior toxicity and efficacy probabilities. A novel class of prior distributions is proposed through logit transformations which implicitly imposes a monotonic constraint on dose toxicity probabilities and correlates the probabilities of the bivariate outcomes. We conduct simulation studies to evaluate the operating characteristics of the proposed method. Under various scenarios, the new Bayesian design based on the toxicity–efficacy odds ratio trade‐offs exhibits good properties and treats most patients at the desirable dose levels. The method is illustrated with a real trial design for a breast medical oncology study.
doi_str_mv 10.1111/j.1541-0420.2006.00534.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_33083052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4124587</jstor_id><sourcerecordid>4124587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6384-7c203a76c4c17f98866725dead5b72a7ca2014dea2cf53de0973bdcd6060bbe83</originalsourceid><addsrcrecordid>eNqNkU9v0zAchiMEYmXwDRBYHBCXZP5v58CBlW1EGi1irUBIyHIcZzikyYhT0dz4CHxGPgkOqYrEAfDFtt7n_Un2E0UAwQSFdVIliFEUQ4phgiHkCYSM0GR3K5odgtvRDIYoJhS9P4rueV-Fa8ogvhsdIZ5KSjCcRR9P9WC90w142Xr749v3c9cUrrkGrgFvPmlvQXaSZWBeu8YZXYNV53TtwdqPzKrdOeP6AeimAGdlGQgzgGVRePBW967196M7ZcDtg_1-HK3Pz1bzV_Hl8iKbv7iMDSeSxsJgSLTghhokylRKzgVmhdUFywXWwmgMEQ13bEpGCgtTQfLCFBxymOdWkuPo6TT3pmu_bK3v1cZ5Y-taN7bdekUIlAQy_E8QI4LCD5IAPvsriLiQjKccjuiTP9Cq3XZNeO84ThJG0zRAcoJM13rf2VLddG6ju0EhqEanqlKjOjWqU6NT9cup2oXqo_38bb6xxe_iXmIAnk_AV1fb4b8Hq9Ns-TqcQv_h1K9833aHPkWYMilCHE-x873dHWLdfVZcEMHUu8WFWvAPcnE1R2qU8XjiS90qfd05r9ZXQSCDQaLEPCU_AdYpz4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213835499</pqid></control><display><type>article</type><title>Bayesian Dose‐Finding in Phase I/II Clinical Trials Using Toxicity and Efficacy Odds Ratios</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Yin, Guosheng ; Li, Yisheng ; Ji, Yuan</creator><creatorcontrib>Yin, Guosheng ; Li, Yisheng ; Ji, Yuan</creatorcontrib><description>A Bayesian adaptive design is proposed for dose‐finding in phase I/II clinical trials to incorporate the bivariate outcomes, toxicity and efficacy, of a new treatment. Without specifying any parametric functional form for the drug dose–response curve, we jointly model the bivariate binary data to account for the correlation between toxicity and efficacy. After observing all the responses of each cohort of patients, the dosage for the next cohort is escalated, deescalated, or unchanged according to the proposed odds ratio criteria constructed from the posterior toxicity and efficacy probabilities. A novel class of prior distributions is proposed through logit transformations which implicitly imposes a monotonic constraint on dose toxicity probabilities and correlates the probabilities of the bivariate outcomes. We conduct simulation studies to evaluate the operating characteristics of the proposed method. Under various scenarios, the new Bayesian design based on the toxicity–efficacy odds ratio trade‐offs exhibits good properties and treats most patients at the desirable dose levels. The method is illustrated with a real trial design for a breast medical oncology study.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2006.00534.x</identifier><identifier>PMID: 16984320</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Antineoplastic Combined Chemotherapy Protocols - administration &amp; dosage ; Bayes Theorem ; Bayesian adaptive design ; Bayesian analysis ; Biometrics ; Biometry ; Bivariate binary model ; Breast cancer ; Breast Neoplasms - drug therapy ; Breast Neoplasms - secondary ; Clinical trials ; Clinical Trials, Phase I as Topic - statistics &amp; numerical data ; Clinical Trials, Phase II as Topic - statistics &amp; numerical data ; Dosage ; dose response ; Dose response relationship ; Dose-Response Relationship, Drug ; Drug dosages ; drugs ; Equivalence contour ; Female ; Gibbs sampling ; Health outcomes ; Humans ; Inference ; Likelihood Functions ; Logistic Models ; Models, Statistical ; Odds Ratio ; Parametric models ; patients ; Phase I clinical trials ; Ratios ; Sample size ; Toxicity ; Toxicology - statistics &amp; numerical data ; Trade-offs</subject><ispartof>Biometrics, 2006-09, Vol.62 (3), p.777-787</ispartof><rights>Copyright 2006 The International Biometric Society</rights><rights>2006, The International Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6384-7c203a76c4c17f98866725dead5b72a7ca2014dea2cf53de0973bdcd6060bbe83</citedby><cites>FETCH-LOGICAL-c6384-7c203a76c4c17f98866725dead5b72a7ca2014dea2cf53de0973bdcd6060bbe83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4124587$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4124587$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27903,27904,45553,45554,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16984320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Guosheng</creatorcontrib><creatorcontrib>Li, Yisheng</creatorcontrib><creatorcontrib>Ji, Yuan</creatorcontrib><title>Bayesian Dose‐Finding in Phase I/II Clinical Trials Using Toxicity and Efficacy Odds Ratios</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>A Bayesian adaptive design is proposed for dose‐finding in phase I/II clinical trials to incorporate the bivariate outcomes, toxicity and efficacy, of a new treatment. Without specifying any parametric functional form for the drug dose–response curve, we jointly model the bivariate binary data to account for the correlation between toxicity and efficacy. After observing all the responses of each cohort of patients, the dosage for the next cohort is escalated, deescalated, or unchanged according to the proposed odds ratio criteria constructed from the posterior toxicity and efficacy probabilities. A novel class of prior distributions is proposed through logit transformations which implicitly imposes a monotonic constraint on dose toxicity probabilities and correlates the probabilities of the bivariate outcomes. We conduct simulation studies to evaluate the operating characteristics of the proposed method. Under various scenarios, the new Bayesian design based on the toxicity–efficacy odds ratio trade‐offs exhibits good properties and treats most patients at the desirable dose levels. The method is illustrated with a real trial design for a breast medical oncology study.</description><subject>Antineoplastic Combined Chemotherapy Protocols - administration &amp; dosage</subject><subject>Bayes Theorem</subject><subject>Bayesian adaptive design</subject><subject>Bayesian analysis</subject><subject>Biometrics</subject><subject>Biometry</subject><subject>Bivariate binary model</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - secondary</subject><subject>Clinical trials</subject><subject>Clinical Trials, Phase I as Topic - statistics &amp; numerical data</subject><subject>Clinical Trials, Phase II as Topic - statistics &amp; numerical data</subject><subject>Dosage</subject><subject>dose response</subject><subject>Dose response relationship</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug dosages</subject><subject>drugs</subject><subject>Equivalence contour</subject><subject>Female</subject><subject>Gibbs sampling</subject><subject>Health outcomes</subject><subject>Humans</subject><subject>Inference</subject><subject>Likelihood Functions</subject><subject>Logistic Models</subject><subject>Models, Statistical</subject><subject>Odds Ratio</subject><subject>Parametric models</subject><subject>patients</subject><subject>Phase I clinical trials</subject><subject>Ratios</subject><subject>Sample size</subject><subject>Toxicity</subject><subject>Toxicology - statistics &amp; numerical data</subject><subject>Trade-offs</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9v0zAchiMEYmXwDRBYHBCXZP5v58CBlW1EGi1irUBIyHIcZzikyYhT0dz4CHxGPgkOqYrEAfDFtt7n_Un2E0UAwQSFdVIliFEUQ4phgiHkCYSM0GR3K5odgtvRDIYoJhS9P4rueV-Fa8ogvhsdIZ5KSjCcRR9P9WC90w142Xr749v3c9cUrrkGrgFvPmlvQXaSZWBeu8YZXYNV53TtwdqPzKrdOeP6AeimAGdlGQgzgGVRePBW967196M7ZcDtg_1-HK3Pz1bzV_Hl8iKbv7iMDSeSxsJgSLTghhokylRKzgVmhdUFywXWwmgMEQ13bEpGCgtTQfLCFBxymOdWkuPo6TT3pmu_bK3v1cZ5Y-taN7bdekUIlAQy_E8QI4LCD5IAPvsriLiQjKccjuiTP9Cq3XZNeO84ThJG0zRAcoJM13rf2VLddG6ju0EhqEanqlKjOjWqU6NT9cup2oXqo_38bb6xxe_iXmIAnk_AV1fb4b8Hq9Ns-TqcQv_h1K9833aHPkWYMilCHE-x873dHWLdfVZcEMHUu8WFWvAPcnE1R2qU8XjiS90qfd05r9ZXQSCDQaLEPCU_AdYpz4w</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>Yin, Guosheng</creator><creator>Li, Yisheng</creator><creator>Ji, Yuan</creator><general>Blackwell Publishing Inc</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7S9</scope><scope>L.6</scope><scope>7U7</scope><scope>C1K</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200609</creationdate><title>Bayesian Dose‐Finding in Phase I/II Clinical Trials Using Toxicity and Efficacy Odds Ratios</title><author>Yin, Guosheng ; Li, Yisheng ; Ji, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6384-7c203a76c4c17f98866725dead5b72a7ca2014dea2cf53de0973bdcd6060bbe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Antineoplastic Combined Chemotherapy Protocols - administration &amp; dosage</topic><topic>Bayes Theorem</topic><topic>Bayesian adaptive design</topic><topic>Bayesian analysis</topic><topic>Biometrics</topic><topic>Biometry</topic><topic>Bivariate binary model</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - secondary</topic><topic>Clinical trials</topic><topic>Clinical Trials, Phase I as Topic - statistics &amp; numerical data</topic><topic>Clinical Trials, Phase II as Topic - statistics &amp; numerical data</topic><topic>Dosage</topic><topic>dose response</topic><topic>Dose response relationship</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug dosages</topic><topic>drugs</topic><topic>Equivalence contour</topic><topic>Female</topic><topic>Gibbs sampling</topic><topic>Health outcomes</topic><topic>Humans</topic><topic>Inference</topic><topic>Likelihood Functions</topic><topic>Logistic Models</topic><topic>Models, Statistical</topic><topic>Odds Ratio</topic><topic>Parametric models</topic><topic>patients</topic><topic>Phase I clinical trials</topic><topic>Ratios</topic><topic>Sample size</topic><topic>Toxicity</topic><topic>Toxicology - statistics &amp; numerical data</topic><topic>Trade-offs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Guosheng</creatorcontrib><creatorcontrib>Li, Yisheng</creatorcontrib><creatorcontrib>Ji, Yuan</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Guosheng</au><au>Li, Yisheng</au><au>Ji, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Dose‐Finding in Phase I/II Clinical Trials Using Toxicity and Efficacy Odds Ratios</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2006-09</date><risdate>2006</risdate><volume>62</volume><issue>3</issue><spage>777</spage><epage>787</epage><pages>777-787</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>A Bayesian adaptive design is proposed for dose‐finding in phase I/II clinical trials to incorporate the bivariate outcomes, toxicity and efficacy, of a new treatment. Without specifying any parametric functional form for the drug dose–response curve, we jointly model the bivariate binary data to account for the correlation between toxicity and efficacy. After observing all the responses of each cohort of patients, the dosage for the next cohort is escalated, deescalated, or unchanged according to the proposed odds ratio criteria constructed from the posterior toxicity and efficacy probabilities. A novel class of prior distributions is proposed through logit transformations which implicitly imposes a monotonic constraint on dose toxicity probabilities and correlates the probabilities of the bivariate outcomes. We conduct simulation studies to evaluate the operating characteristics of the proposed method. Under various scenarios, the new Bayesian design based on the toxicity–efficacy odds ratio trade‐offs exhibits good properties and treats most patients at the desirable dose levels. The method is illustrated with a real trial design for a breast medical oncology study.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>16984320</pmid><doi>10.1111/j.1541-0420.2006.00534.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2006-09, Vol.62 (3), p.777-787
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_33083052
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics
subjects Antineoplastic Combined Chemotherapy Protocols - administration & dosage
Bayes Theorem
Bayesian adaptive design
Bayesian analysis
Biometrics
Biometry
Bivariate binary model
Breast cancer
Breast Neoplasms - drug therapy
Breast Neoplasms - secondary
Clinical trials
Clinical Trials, Phase I as Topic - statistics & numerical data
Clinical Trials, Phase II as Topic - statistics & numerical data
Dosage
dose response
Dose response relationship
Dose-Response Relationship, Drug
Drug dosages
drugs
Equivalence contour
Female
Gibbs sampling
Health outcomes
Humans
Inference
Likelihood Functions
Logistic Models
Models, Statistical
Odds Ratio
Parametric models
patients
Phase I clinical trials
Ratios
Sample size
Toxicity
Toxicology - statistics & numerical data
Trade-offs
title Bayesian Dose‐Finding in Phase I/II Clinical Trials Using Toxicity and Efficacy Odds Ratios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Dose%E2%80%90Finding%20in%20Phase%20I/II%20Clinical%20Trials%20Using%20Toxicity%20and%20Efficacy%20Odds%20Ratios&rft.jtitle=Biometrics&rft.au=Yin,%20Guosheng&rft.date=2006-09&rft.volume=62&rft.issue=3&rft.spage=777&rft.epage=787&rft.pages=777-787&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2006.00534.x&rft_dat=%3Cjstor_proqu%3E4124587%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213835499&rft_id=info:pmid/16984320&rft_jstor_id=4124587&rfr_iscdi=true