Bayesian Dose‐Finding in Phase I/II Clinical Trials Using Toxicity and Efficacy Odds Ratios
A Bayesian adaptive design is proposed for dose‐finding in phase I/II clinical trials to incorporate the bivariate outcomes, toxicity and efficacy, of a new treatment. Without specifying any parametric functional form for the drug dose–response curve, we jointly model the bivariate binary data to ac...
Gespeichert in:
Veröffentlicht in: | Biometrics 2006-09, Vol.62 (3), p.777-787 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 787 |
---|---|
container_issue | 3 |
container_start_page | 777 |
container_title | Biometrics |
container_volume | 62 |
creator | Yin, Guosheng Li, Yisheng Ji, Yuan |
description | A Bayesian adaptive design is proposed for dose‐finding in phase I/II clinical trials to incorporate the bivariate outcomes, toxicity and efficacy, of a new treatment. Without specifying any parametric functional form for the drug dose–response curve, we jointly model the bivariate binary data to account for the correlation between toxicity and efficacy. After observing all the responses of each cohort of patients, the dosage for the next cohort is escalated, deescalated, or unchanged according to the proposed odds ratio criteria constructed from the posterior toxicity and efficacy probabilities. A novel class of prior distributions is proposed through logit transformations which implicitly imposes a monotonic constraint on dose toxicity probabilities and correlates the probabilities of the bivariate outcomes. We conduct simulation studies to evaluate the operating characteristics of the proposed method. Under various scenarios, the new Bayesian design based on the toxicity–efficacy odds ratio trade‐offs exhibits good properties and treats most patients at the desirable dose levels. The method is illustrated with a real trial design for a breast medical oncology study. |
doi_str_mv | 10.1111/j.1541-0420.2006.00534.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_33083052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4124587</jstor_id><sourcerecordid>4124587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6384-7c203a76c4c17f98866725dead5b72a7ca2014dea2cf53de0973bdcd6060bbe83</originalsourceid><addsrcrecordid>eNqNkU9v0zAchiMEYmXwDRBYHBCXZP5v58CBlW1EGi1irUBIyHIcZzikyYhT0dz4CHxGPgkOqYrEAfDFtt7n_Un2E0UAwQSFdVIliFEUQ4phgiHkCYSM0GR3K5odgtvRDIYoJhS9P4rueV-Fa8ogvhsdIZ5KSjCcRR9P9WC90w142Xr749v3c9cUrrkGrgFvPmlvQXaSZWBeu8YZXYNV53TtwdqPzKrdOeP6AeimAGdlGQgzgGVRePBW967196M7ZcDtg_1-HK3Pz1bzV_Hl8iKbv7iMDSeSxsJgSLTghhokylRKzgVmhdUFywXWwmgMEQ13bEpGCgtTQfLCFBxymOdWkuPo6TT3pmu_bK3v1cZ5Y-taN7bdekUIlAQy_E8QI4LCD5IAPvsriLiQjKccjuiTP9Cq3XZNeO84ThJG0zRAcoJM13rf2VLddG6ju0EhqEanqlKjOjWqU6NT9cup2oXqo_38bb6xxe_iXmIAnk_AV1fb4b8Hq9Ns-TqcQv_h1K9833aHPkWYMilCHE-x873dHWLdfVZcEMHUu8WFWvAPcnE1R2qU8XjiS90qfd05r9ZXQSCDQaLEPCU_AdYpz4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213835499</pqid></control><display><type>article</type><title>Bayesian Dose‐Finding in Phase I/II Clinical Trials Using Toxicity and Efficacy Odds Ratios</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Yin, Guosheng ; Li, Yisheng ; Ji, Yuan</creator><creatorcontrib>Yin, Guosheng ; Li, Yisheng ; Ji, Yuan</creatorcontrib><description>A Bayesian adaptive design is proposed for dose‐finding in phase I/II clinical trials to incorporate the bivariate outcomes, toxicity and efficacy, of a new treatment. Without specifying any parametric functional form for the drug dose–response curve, we jointly model the bivariate binary data to account for the correlation between toxicity and efficacy. After observing all the responses of each cohort of patients, the dosage for the next cohort is escalated, deescalated, or unchanged according to the proposed odds ratio criteria constructed from the posterior toxicity and efficacy probabilities. A novel class of prior distributions is proposed through logit transformations which implicitly imposes a monotonic constraint on dose toxicity probabilities and correlates the probabilities of the bivariate outcomes. We conduct simulation studies to evaluate the operating characteristics of the proposed method. Under various scenarios, the new Bayesian design based on the toxicity–efficacy odds ratio trade‐offs exhibits good properties and treats most patients at the desirable dose levels. The method is illustrated with a real trial design for a breast medical oncology study.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2006.00534.x</identifier><identifier>PMID: 16984320</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Antineoplastic Combined Chemotherapy Protocols - administration & dosage ; Bayes Theorem ; Bayesian adaptive design ; Bayesian analysis ; Biometrics ; Biometry ; Bivariate binary model ; Breast cancer ; Breast Neoplasms - drug therapy ; Breast Neoplasms - secondary ; Clinical trials ; Clinical Trials, Phase I as Topic - statistics & numerical data ; Clinical Trials, Phase II as Topic - statistics & numerical data ; Dosage ; dose response ; Dose response relationship ; Dose-Response Relationship, Drug ; Drug dosages ; drugs ; Equivalence contour ; Female ; Gibbs sampling ; Health outcomes ; Humans ; Inference ; Likelihood Functions ; Logistic Models ; Models, Statistical ; Odds Ratio ; Parametric models ; patients ; Phase I clinical trials ; Ratios ; Sample size ; Toxicity ; Toxicology - statistics & numerical data ; Trade-offs</subject><ispartof>Biometrics, 2006-09, Vol.62 (3), p.777-787</ispartof><rights>Copyright 2006 The International Biometric Society</rights><rights>2006, The International Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6384-7c203a76c4c17f98866725dead5b72a7ca2014dea2cf53de0973bdcd6060bbe83</citedby><cites>FETCH-LOGICAL-c6384-7c203a76c4c17f98866725dead5b72a7ca2014dea2cf53de0973bdcd6060bbe83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4124587$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4124587$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27903,27904,45553,45554,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16984320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Guosheng</creatorcontrib><creatorcontrib>Li, Yisheng</creatorcontrib><creatorcontrib>Ji, Yuan</creatorcontrib><title>Bayesian Dose‐Finding in Phase I/II Clinical Trials Using Toxicity and Efficacy Odds Ratios</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>A Bayesian adaptive design is proposed for dose‐finding in phase I/II clinical trials to incorporate the bivariate outcomes, toxicity and efficacy, of a new treatment. Without specifying any parametric functional form for the drug dose–response curve, we jointly model the bivariate binary data to account for the correlation between toxicity and efficacy. After observing all the responses of each cohort of patients, the dosage for the next cohort is escalated, deescalated, or unchanged according to the proposed odds ratio criteria constructed from the posterior toxicity and efficacy probabilities. A novel class of prior distributions is proposed through logit transformations which implicitly imposes a monotonic constraint on dose toxicity probabilities and correlates the probabilities of the bivariate outcomes. We conduct simulation studies to evaluate the operating characteristics of the proposed method. Under various scenarios, the new Bayesian design based on the toxicity–efficacy odds ratio trade‐offs exhibits good properties and treats most patients at the desirable dose levels. The method is illustrated with a real trial design for a breast medical oncology study.</description><subject>Antineoplastic Combined Chemotherapy Protocols - administration & dosage</subject><subject>Bayes Theorem</subject><subject>Bayesian adaptive design</subject><subject>Bayesian analysis</subject><subject>Biometrics</subject><subject>Biometry</subject><subject>Bivariate binary model</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - secondary</subject><subject>Clinical trials</subject><subject>Clinical Trials, Phase I as Topic - statistics & numerical data</subject><subject>Clinical Trials, Phase II as Topic - statistics & numerical data</subject><subject>Dosage</subject><subject>dose response</subject><subject>Dose response relationship</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug dosages</subject><subject>drugs</subject><subject>Equivalence contour</subject><subject>Female</subject><subject>Gibbs sampling</subject><subject>Health outcomes</subject><subject>Humans</subject><subject>Inference</subject><subject>Likelihood Functions</subject><subject>Logistic Models</subject><subject>Models, Statistical</subject><subject>Odds Ratio</subject><subject>Parametric models</subject><subject>patients</subject><subject>Phase I clinical trials</subject><subject>Ratios</subject><subject>Sample size</subject><subject>Toxicity</subject><subject>Toxicology - statistics & numerical data</subject><subject>Trade-offs</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9v0zAchiMEYmXwDRBYHBCXZP5v58CBlW1EGi1irUBIyHIcZzikyYhT0dz4CHxGPgkOqYrEAfDFtt7n_Un2E0UAwQSFdVIliFEUQ4phgiHkCYSM0GR3K5odgtvRDIYoJhS9P4rueV-Fa8ogvhsdIZ5KSjCcRR9P9WC90w142Xr749v3c9cUrrkGrgFvPmlvQXaSZWBeu8YZXYNV53TtwdqPzKrdOeP6AeimAGdlGQgzgGVRePBW967196M7ZcDtg_1-HK3Pz1bzV_Hl8iKbv7iMDSeSxsJgSLTghhokylRKzgVmhdUFywXWwmgMEQ13bEpGCgtTQfLCFBxymOdWkuPo6TT3pmu_bK3v1cZ5Y-taN7bdekUIlAQy_E8QI4LCD5IAPvsriLiQjKccjuiTP9Cq3XZNeO84ThJG0zRAcoJM13rf2VLddG6ju0EhqEanqlKjOjWqU6NT9cup2oXqo_38bb6xxe_iXmIAnk_AV1fb4b8Hq9Ns-TqcQv_h1K9833aHPkWYMilCHE-x873dHWLdfVZcEMHUu8WFWvAPcnE1R2qU8XjiS90qfd05r9ZXQSCDQaLEPCU_AdYpz4w</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>Yin, Guosheng</creator><creator>Li, Yisheng</creator><creator>Ji, Yuan</creator><general>Blackwell Publishing Inc</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7S9</scope><scope>L.6</scope><scope>7U7</scope><scope>C1K</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200609</creationdate><title>Bayesian Dose‐Finding in Phase I/II Clinical Trials Using Toxicity and Efficacy Odds Ratios</title><author>Yin, Guosheng ; Li, Yisheng ; Ji, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6384-7c203a76c4c17f98866725dead5b72a7ca2014dea2cf53de0973bdcd6060bbe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Antineoplastic Combined Chemotherapy Protocols - administration & dosage</topic><topic>Bayes Theorem</topic><topic>Bayesian adaptive design</topic><topic>Bayesian analysis</topic><topic>Biometrics</topic><topic>Biometry</topic><topic>Bivariate binary model</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - secondary</topic><topic>Clinical trials</topic><topic>Clinical Trials, Phase I as Topic - statistics & numerical data</topic><topic>Clinical Trials, Phase II as Topic - statistics & numerical data</topic><topic>Dosage</topic><topic>dose response</topic><topic>Dose response relationship</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug dosages</topic><topic>drugs</topic><topic>Equivalence contour</topic><topic>Female</topic><topic>Gibbs sampling</topic><topic>Health outcomes</topic><topic>Humans</topic><topic>Inference</topic><topic>Likelihood Functions</topic><topic>Logistic Models</topic><topic>Models, Statistical</topic><topic>Odds Ratio</topic><topic>Parametric models</topic><topic>patients</topic><topic>Phase I clinical trials</topic><topic>Ratios</topic><topic>Sample size</topic><topic>Toxicity</topic><topic>Toxicology - statistics & numerical data</topic><topic>Trade-offs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Guosheng</creatorcontrib><creatorcontrib>Li, Yisheng</creatorcontrib><creatorcontrib>Ji, Yuan</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Guosheng</au><au>Li, Yisheng</au><au>Ji, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Dose‐Finding in Phase I/II Clinical Trials Using Toxicity and Efficacy Odds Ratios</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2006-09</date><risdate>2006</risdate><volume>62</volume><issue>3</issue><spage>777</spage><epage>787</epage><pages>777-787</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>A Bayesian adaptive design is proposed for dose‐finding in phase I/II clinical trials to incorporate the bivariate outcomes, toxicity and efficacy, of a new treatment. Without specifying any parametric functional form for the drug dose–response curve, we jointly model the bivariate binary data to account for the correlation between toxicity and efficacy. After observing all the responses of each cohort of patients, the dosage for the next cohort is escalated, deescalated, or unchanged according to the proposed odds ratio criteria constructed from the posterior toxicity and efficacy probabilities. A novel class of prior distributions is proposed through logit transformations which implicitly imposes a monotonic constraint on dose toxicity probabilities and correlates the probabilities of the bivariate outcomes. We conduct simulation studies to evaluate the operating characteristics of the proposed method. Under various scenarios, the new Bayesian design based on the toxicity–efficacy odds ratio trade‐offs exhibits good properties and treats most patients at the desirable dose levels. The method is illustrated with a real trial design for a breast medical oncology study.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>16984320</pmid><doi>10.1111/j.1541-0420.2006.00534.x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2006-09, Vol.62 (3), p.777-787 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_33083052 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics |
subjects | Antineoplastic Combined Chemotherapy Protocols - administration & dosage Bayes Theorem Bayesian adaptive design Bayesian analysis Biometrics Biometry Bivariate binary model Breast cancer Breast Neoplasms - drug therapy Breast Neoplasms - secondary Clinical trials Clinical Trials, Phase I as Topic - statistics & numerical data Clinical Trials, Phase II as Topic - statistics & numerical data Dosage dose response Dose response relationship Dose-Response Relationship, Drug Drug dosages drugs Equivalence contour Female Gibbs sampling Health outcomes Humans Inference Likelihood Functions Logistic Models Models, Statistical Odds Ratio Parametric models patients Phase I clinical trials Ratios Sample size Toxicity Toxicology - statistics & numerical data Trade-offs |
title | Bayesian Dose‐Finding in Phase I/II Clinical Trials Using Toxicity and Efficacy Odds Ratios |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Dose%E2%80%90Finding%20in%20Phase%20I/II%20Clinical%20Trials%20Using%20Toxicity%20and%20Efficacy%20Odds%20Ratios&rft.jtitle=Biometrics&rft.au=Yin,%20Guosheng&rft.date=2006-09&rft.volume=62&rft.issue=3&rft.spage=777&rft.epage=787&rft.pages=777-787&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2006.00534.x&rft_dat=%3Cjstor_proqu%3E4124587%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213835499&rft_id=info:pmid/16984320&rft_jstor_id=4124587&rfr_iscdi=true |