Integration approach of the Couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer

For powder type self-compacting concrete (SCC) mixes, commonly used in Belgium, a shear thickening (Herschel–Bulkley) flow behaviour of the fresh mixes is quite often observed. A longstanding problem in rheometry is the so-called “Couette inverse problem”, where one tries to derive the flow curve τ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-Newtonian fluid mechanics 2008-04, Vol.150 (2), p.93-103
Hauptverfasser: Heirman, G., Vandewalle, L., Van Gemert, D., Wallevik, Ó.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103
container_issue 2
container_start_page 93
container_title Journal of non-Newtonian fluid mechanics
container_volume 150
creator Heirman, G.
Vandewalle, L.
Van Gemert, D.
Wallevik, Ó.
description For powder type self-compacting concrete (SCC) mixes, commonly used in Belgium, a shear thickening (Herschel–Bulkley) flow behaviour of the fresh mixes is quite often observed. A longstanding problem in rheometry is the so-called “Couette inverse problem”, where one tries to derive the flow curve τ ( γ ˙ ) from the torque measurements T( N) in a (wide-gap) concentric cylinder (Couette) rheometer, with T the torque registered at the inner, stationary cylinder and N the rotational velocity of the outer, rotating, cylinder. In this paper, the Couette inverse problem is approached by means of the integration method in order to convert T( N) into τ ( γ ˙ ) for a wide-gap ( R o/ R i = 1.45) concentric cylinder rheometer. The approach consists in the decoupling of the flow resistance and the power-law flow behaviour after exceeding the flow resistance. The integration approach is validated by experimental verification with different powder type SCC mixtures. By means of illustration, the results of one limestone powder type SCC mixture with different superplasticizer contents are shown in this paper.
doi_str_mv 10.1016/j.jnnfm.2007.10.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33066273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377025707002108</els_id><sourcerecordid>33066273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-fedcfb6678f4ff5db075379df2073dd9557a443a3aa1cf70cfaeba0e9098aa553</originalsourceid><addsrcrecordid>eNp9kb9u2zAQxomiBeqmfYIuXNpN7kk0RWvoUBjNHyBAlmYmztTRpiGRKkkn8BP0tUPZQcfccsB3v--I-8jY1xqWNdTtj8Py4L0dlw2AKsoSQLxji3qtRNW0on7PFiCUqqCR6iP7lNIBSknRLti_O59pFzG74DlOUwxo9jxYnvfEN-FIORN3_oliIl6m24HGeTyF554iz6eJeKLBViaME5rs_I6b4E2ks48jf3Y9VTuczjL5HJ3h5jQ4P_vjnsJY0PiZfbA4JPry2q_Y4_XvP5vb6v7h5m7z674yEkSuLPXGbttWre3KWtlvQUmhut42oETfd1IqXK0ECsTaWAXGIm0RqINujSiluGLfL3vLLX-PlLIeXTI0DOgpHJMWAtq2UaKA4gKaGFKKZPUU3YjxpGvQc-j6oM-h6zn0WSyhF9e31_WYDA42ojcu_bc25QdAdFC4nxeOyq1PjqJOxlHJp3eRTNZ9cG--8wLjrpzV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33066273</pqid></control><display><type>article</type><title>Integration approach of the Couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Heirman, G. ; Vandewalle, L. ; Van Gemert, D. ; Wallevik, Ó.</creator><creatorcontrib>Heirman, G. ; Vandewalle, L. ; Van Gemert, D. ; Wallevik, Ó.</creatorcontrib><description>For powder type self-compacting concrete (SCC) mixes, commonly used in Belgium, a shear thickening (Herschel–Bulkley) flow behaviour of the fresh mixes is quite often observed. A longstanding problem in rheometry is the so-called “Couette inverse problem”, where one tries to derive the flow curve τ ( γ ˙ ) from the torque measurements T( N) in a (wide-gap) concentric cylinder (Couette) rheometer, with T the torque registered at the inner, stationary cylinder and N the rotational velocity of the outer, rotating, cylinder. In this paper, the Couette inverse problem is approached by means of the integration method in order to convert T( N) into τ ( γ ˙ ) for a wide-gap ( R o/ R i = 1.45) concentric cylinder rheometer. The approach consists in the decoupling of the flow resistance and the power-law flow behaviour after exceeding the flow resistance. The integration approach is validated by experimental verification with different powder type SCC mixtures. By means of illustration, the results of one limestone powder type SCC mixture with different superplasticizer contents are shown in this paper.</description><identifier>ISSN: 0377-0257</identifier><identifier>EISSN: 1873-2631</identifier><identifier>DOI: 10.1016/j.jnnfm.2007.10.003</identifier><identifier>CODEN: JNFMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Buildings. Public works ; Concretes. Mortars. Grouts ; Couette inverse problem ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Herschel–Bulkley ; Integration approach ; Materials ; Non-newtonian fluid flows ; Other special applications (sand concrete, roller compacted concrete, heavy concrete, architectural concrete, etc.) ; Physics ; Rheological measurements ; Rheology ; Self-compacting concrete ; Shear thickening ; Strength of materials (elasticity, plasticity, buckling, etc.) ; Structural analysis. Stresses ; Techniques and apparatus</subject><ispartof>Journal of non-Newtonian fluid mechanics, 2008-04, Vol.150 (2), p.93-103</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-fedcfb6678f4ff5db075379df2073dd9557a443a3aa1cf70cfaeba0e9098aa553</citedby><cites>FETCH-LOGICAL-c503t-fedcfb6678f4ff5db075379df2073dd9557a443a3aa1cf70cfaeba0e9098aa553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnnfm.2007.10.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20250390$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Heirman, G.</creatorcontrib><creatorcontrib>Vandewalle, L.</creatorcontrib><creatorcontrib>Van Gemert, D.</creatorcontrib><creatorcontrib>Wallevik, Ó.</creatorcontrib><title>Integration approach of the Couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer</title><title>Journal of non-Newtonian fluid mechanics</title><description>For powder type self-compacting concrete (SCC) mixes, commonly used in Belgium, a shear thickening (Herschel–Bulkley) flow behaviour of the fresh mixes is quite often observed. A longstanding problem in rheometry is the so-called “Couette inverse problem”, where one tries to derive the flow curve τ ( γ ˙ ) from the torque measurements T( N) in a (wide-gap) concentric cylinder (Couette) rheometer, with T the torque registered at the inner, stationary cylinder and N the rotational velocity of the outer, rotating, cylinder. In this paper, the Couette inverse problem is approached by means of the integration method in order to convert T( N) into τ ( γ ˙ ) for a wide-gap ( R o/ R i = 1.45) concentric cylinder rheometer. The approach consists in the decoupling of the flow resistance and the power-law flow behaviour after exceeding the flow resistance. The integration approach is validated by experimental verification with different powder type SCC mixtures. By means of illustration, the results of one limestone powder type SCC mixture with different superplasticizer contents are shown in this paper.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Concretes. Mortars. Grouts</subject><subject>Couette inverse problem</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Herschel–Bulkley</subject><subject>Integration approach</subject><subject>Materials</subject><subject>Non-newtonian fluid flows</subject><subject>Other special applications (sand concrete, roller compacted concrete, heavy concrete, architectural concrete, etc.)</subject><subject>Physics</subject><subject>Rheological measurements</subject><subject>Rheology</subject><subject>Self-compacting concrete</subject><subject>Shear thickening</subject><subject>Strength of materials (elasticity, plasticity, buckling, etc.)</subject><subject>Structural analysis. Stresses</subject><subject>Techniques and apparatus</subject><issn>0377-0257</issn><issn>1873-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kb9u2zAQxomiBeqmfYIuXNpN7kk0RWvoUBjNHyBAlmYmztTRpiGRKkkn8BP0tUPZQcfccsB3v--I-8jY1xqWNdTtj8Py4L0dlw2AKsoSQLxji3qtRNW0on7PFiCUqqCR6iP7lNIBSknRLti_O59pFzG74DlOUwxo9jxYnvfEN-FIORN3_oliIl6m24HGeTyF554iz6eJeKLBViaME5rs_I6b4E2ks48jf3Y9VTuczjL5HJ3h5jQ4P_vjnsJY0PiZfbA4JPry2q_Y4_XvP5vb6v7h5m7z674yEkSuLPXGbttWre3KWtlvQUmhut42oETfd1IqXK0ECsTaWAXGIm0RqINujSiluGLfL3vLLX-PlLIeXTI0DOgpHJMWAtq2UaKA4gKaGFKKZPUU3YjxpGvQc-j6oM-h6zn0WSyhF9e31_WYDA42ojcu_bc25QdAdFC4nxeOyq1PjqJOxlHJp3eRTNZ9cG--8wLjrpzV</recordid><startdate>20080414</startdate><enddate>20080414</enddate><creator>Heirman, G.</creator><creator>Vandewalle, L.</creator><creator>Van Gemert, D.</creator><creator>Wallevik, Ó.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20080414</creationdate><title>Integration approach of the Couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer</title><author>Heirman, G. ; Vandewalle, L. ; Van Gemert, D. ; Wallevik, Ó.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-fedcfb6678f4ff5db075379df2073dd9557a443a3aa1cf70cfaeba0e9098aa553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Concretes. Mortars. Grouts</topic><topic>Couette inverse problem</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Herschel–Bulkley</topic><topic>Integration approach</topic><topic>Materials</topic><topic>Non-newtonian fluid flows</topic><topic>Other special applications (sand concrete, roller compacted concrete, heavy concrete, architectural concrete, etc.)</topic><topic>Physics</topic><topic>Rheological measurements</topic><topic>Rheology</topic><topic>Self-compacting concrete</topic><topic>Shear thickening</topic><topic>Strength of materials (elasticity, plasticity, buckling, etc.)</topic><topic>Structural analysis. Stresses</topic><topic>Techniques and apparatus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heirman, G.</creatorcontrib><creatorcontrib>Vandewalle, L.</creatorcontrib><creatorcontrib>Van Gemert, D.</creatorcontrib><creatorcontrib>Wallevik, Ó.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-Newtonian fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heirman, G.</au><au>Vandewalle, L.</au><au>Van Gemert, D.</au><au>Wallevik, Ó.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration approach of the Couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer</atitle><jtitle>Journal of non-Newtonian fluid mechanics</jtitle><date>2008-04-14</date><risdate>2008</risdate><volume>150</volume><issue>2</issue><spage>93</spage><epage>103</epage><pages>93-103</pages><issn>0377-0257</issn><eissn>1873-2631</eissn><coden>JNFMDI</coden><abstract>For powder type self-compacting concrete (SCC) mixes, commonly used in Belgium, a shear thickening (Herschel–Bulkley) flow behaviour of the fresh mixes is quite often observed. A longstanding problem in rheometry is the so-called “Couette inverse problem”, where one tries to derive the flow curve τ ( γ ˙ ) from the torque measurements T( N) in a (wide-gap) concentric cylinder (Couette) rheometer, with T the torque registered at the inner, stationary cylinder and N the rotational velocity of the outer, rotating, cylinder. In this paper, the Couette inverse problem is approached by means of the integration method in order to convert T( N) into τ ( γ ˙ ) for a wide-gap ( R o/ R i = 1.45) concentric cylinder rheometer. The approach consists in the decoupling of the flow resistance and the power-law flow behaviour after exceeding the flow resistance. The integration approach is validated by experimental verification with different powder type SCC mixtures. By means of illustration, the results of one limestone powder type SCC mixture with different superplasticizer contents are shown in this paper.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnnfm.2007.10.003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0257
ispartof Journal of non-Newtonian fluid mechanics, 2008-04, Vol.150 (2), p.93-103
issn 0377-0257
1873-2631
language eng
recordid cdi_proquest_miscellaneous_33066273
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Buildings. Public works
Concretes. Mortars. Grouts
Couette inverse problem
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Herschel–Bulkley
Integration approach
Materials
Non-newtonian fluid flows
Other special applications (sand concrete, roller compacted concrete, heavy concrete, architectural concrete, etc.)
Physics
Rheological measurements
Rheology
Self-compacting concrete
Shear thickening
Strength of materials (elasticity, plasticity, buckling, etc.)
Structural analysis. Stresses
Techniques and apparatus
title Integration approach of the Couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A47%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20approach%20of%20the%20Couette%20inverse%20problem%20of%20powder%20type%20self-compacting%20concrete%20in%20a%20wide-gap%20concentric%20cylinder%20rheometer&rft.jtitle=Journal%20of%20non-Newtonian%20fluid%20mechanics&rft.au=Heirman,%20G.&rft.date=2008-04-14&rft.volume=150&rft.issue=2&rft.spage=93&rft.epage=103&rft.pages=93-103&rft.issn=0377-0257&rft.eissn=1873-2631&rft.coden=JNFMDI&rft_id=info:doi/10.1016/j.jnnfm.2007.10.003&rft_dat=%3Cproquest_cross%3E33066273%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33066273&rft_id=info:pmid/&rft_els_id=S0377025707002108&rfr_iscdi=true