Technical note: A computationally efficient algorithm for undiscounted Markov decision processes with restricted observations
We present a computationally efficient procedure to determine control policies for an infinite horizon Markov Decision process with restricted observations. The optimal policy for the system with restricted observations is a function of the observation process and not the unobservable states of the...
Gespeichert in:
Veröffentlicht in: | Naval research logistics 2009-02, Vol.56 (1), p.86-92 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92 |
---|---|
container_issue | 1 |
container_start_page | 86 |
container_title | Naval research logistics |
container_volume | 56 |
creator | Davis, Lauren B. Hodgson, Thom J. King, Russell E. Wei, Wenbin |
description | We present a computationally efficient procedure to determine control policies for an infinite horizon Markov Decision process with restricted observations. The optimal policy for the system with restricted observations is a function of the observation process and not the unobservable states of the system. Thus, the policy is stationary with respect to the partitioned state space. The algorithm we propose addresses the undiscounted average cost case. The algorithm combines a local search with a modified version of Howard's (Dynamic programming and Markov processes, MIT Press, Cambridge, MA, 1960) policy iteration method. We demonstrate empirically that the algorithm finds the optimal deterministic policy for over 96% of the problem instances generated. For large scale problem instances, we demonstrate that the average cost associated with the local optimal policy is lower than the average cost associated with an integer rounded policy produced by the algorithm of Serin and Kulkarni Math Methods Oper Res 61 (2005) 311–328. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009 |
doi_str_mv | 10.1002/nav.20329 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32983188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32983188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3929-8b5f8bc068b9a48c25a7f3d3868d4e81e3f57366755d90a94c5f6a1f1f3d39d3</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEuVn4A08ITEEnDhObLYKUUAqZYkAsViuc00NaVzspNCBd8elwMbk5Zyrzweho5ScpoRkZ61anmaEZmILDVKWkaQoGdlGA8JFnpBCPO6ivRBeCCFFTtgAfVagZ63VqsGt6-AcD7F280Xfqc66VjXNCoMxVltoO6yaZ-dtN5tj4zzu29oG7fq2gxrfKv_qlrgGbUMU8cI7DSFAwO9RwB5C561ek24awC-_z4cDtGNUE-Dw591H1eiyurhOxndXNxfDcaKpyETCp8zwqSYFnwqVc50xVRpaU17wOgeeAjWspEX8KqsFUSLXzBQqNekaEjXdR8ebs3HVWx-nyHlcDk2jWnB9kDEXpynnETzZgNq7EDwYufB2rvxKpkSu-8rYV373jezZhn23Daz-B-VkeP9rJBvDhg4-_oxYThYlLZl8mFzJMSO39GlUyXv6BUbAj3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32983188</pqid></control><display><type>article</type><title>Technical note: A computationally efficient algorithm for undiscounted Markov decision processes with restricted observations</title><source>Wiley Online Library</source><creator>Davis, Lauren B. ; Hodgson, Thom J. ; King, Russell E. ; Wei, Wenbin</creator><creatorcontrib>Davis, Lauren B. ; Hodgson, Thom J. ; King, Russell E. ; Wei, Wenbin</creatorcontrib><description>We present a computationally efficient procedure to determine control policies for an infinite horizon Markov Decision process with restricted observations. The optimal policy for the system with restricted observations is a function of the observation process and not the unobservable states of the system. Thus, the policy is stationary with respect to the partitioned state space. The algorithm we propose addresses the undiscounted average cost case. The algorithm combines a local search with a modified version of Howard's (Dynamic programming and Markov processes, MIT Press, Cambridge, MA, 1960) policy iteration method. We demonstrate empirically that the algorithm finds the optimal deterministic policy for over 96% of the problem instances generated. For large scale problem instances, we demonstrate that the average cost associated with the local optimal policy is lower than the average cost associated with an integer rounded policy produced by the algorithm of Serin and Kulkarni Math Methods Oper Res 61 (2005) 311–328. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009</description><identifier>ISSN: 0894-069X</identifier><identifier>EISSN: 1520-6750</identifier><identifier>DOI: 10.1002/nav.20329</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>heuristics ; Markov Decision process ; optimal control</subject><ispartof>Naval research logistics, 2009-02, Vol.56 (1), p.86-92</ispartof><rights>Copyright © 2008 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3929-8b5f8bc068b9a48c25a7f3d3868d4e81e3f57366755d90a94c5f6a1f1f3d39d3</citedby><cites>FETCH-LOGICAL-c3929-8b5f8bc068b9a48c25a7f3d3868d4e81e3f57366755d90a94c5f6a1f1f3d39d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnav.20329$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnav.20329$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Davis, Lauren B.</creatorcontrib><creatorcontrib>Hodgson, Thom J.</creatorcontrib><creatorcontrib>King, Russell E.</creatorcontrib><creatorcontrib>Wei, Wenbin</creatorcontrib><title>Technical note: A computationally efficient algorithm for undiscounted Markov decision processes with restricted observations</title><title>Naval research logistics</title><addtitle>Naval Research Logistics</addtitle><description>We present a computationally efficient procedure to determine control policies for an infinite horizon Markov Decision process with restricted observations. The optimal policy for the system with restricted observations is a function of the observation process and not the unobservable states of the system. Thus, the policy is stationary with respect to the partitioned state space. The algorithm we propose addresses the undiscounted average cost case. The algorithm combines a local search with a modified version of Howard's (Dynamic programming and Markov processes, MIT Press, Cambridge, MA, 1960) policy iteration method. We demonstrate empirically that the algorithm finds the optimal deterministic policy for over 96% of the problem instances generated. For large scale problem instances, we demonstrate that the average cost associated with the local optimal policy is lower than the average cost associated with an integer rounded policy produced by the algorithm of Serin and Kulkarni Math Methods Oper Res 61 (2005) 311–328. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009</description><subject>heuristics</subject><subject>Markov Decision process</subject><subject>optimal control</subject><issn>0894-069X</issn><issn>1520-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAURi0EEuVn4A08ITEEnDhObLYKUUAqZYkAsViuc00NaVzspNCBd8elwMbk5Zyrzweho5ScpoRkZ61anmaEZmILDVKWkaQoGdlGA8JFnpBCPO6ivRBeCCFFTtgAfVagZ63VqsGt6-AcD7F280Xfqc66VjXNCoMxVltoO6yaZ-dtN5tj4zzu29oG7fq2gxrfKv_qlrgGbUMU8cI7DSFAwO9RwB5C561ek24awC-_z4cDtGNUE-Dw591H1eiyurhOxndXNxfDcaKpyETCp8zwqSYFnwqVc50xVRpaU17wOgeeAjWspEX8KqsFUSLXzBQqNekaEjXdR8ebs3HVWx-nyHlcDk2jWnB9kDEXpynnETzZgNq7EDwYufB2rvxKpkSu-8rYV373jezZhn23Daz-B-VkeP9rJBvDhg4-_oxYThYlLZl8mFzJMSO39GlUyXv6BUbAj3Q</recordid><startdate>200902</startdate><enddate>200902</enddate><creator>Davis, Lauren B.</creator><creator>Hodgson, Thom J.</creator><creator>King, Russell E.</creator><creator>Wei, Wenbin</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200902</creationdate><title>Technical note: A computationally efficient algorithm for undiscounted Markov decision processes with restricted observations</title><author>Davis, Lauren B. ; Hodgson, Thom J. ; King, Russell E. ; Wei, Wenbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3929-8b5f8bc068b9a48c25a7f3d3868d4e81e3f57366755d90a94c5f6a1f1f3d39d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>heuristics</topic><topic>Markov Decision process</topic><topic>optimal control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, Lauren B.</creatorcontrib><creatorcontrib>Hodgson, Thom J.</creatorcontrib><creatorcontrib>King, Russell E.</creatorcontrib><creatorcontrib>Wei, Wenbin</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Naval research logistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, Lauren B.</au><au>Hodgson, Thom J.</au><au>King, Russell E.</au><au>Wei, Wenbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Technical note: A computationally efficient algorithm for undiscounted Markov decision processes with restricted observations</atitle><jtitle>Naval research logistics</jtitle><addtitle>Naval Research Logistics</addtitle><date>2009-02</date><risdate>2009</risdate><volume>56</volume><issue>1</issue><spage>86</spage><epage>92</epage><pages>86-92</pages><issn>0894-069X</issn><eissn>1520-6750</eissn><abstract>We present a computationally efficient procedure to determine control policies for an infinite horizon Markov Decision process with restricted observations. The optimal policy for the system with restricted observations is a function of the observation process and not the unobservable states of the system. Thus, the policy is stationary with respect to the partitioned state space. The algorithm we propose addresses the undiscounted average cost case. The algorithm combines a local search with a modified version of Howard's (Dynamic programming and Markov processes, MIT Press, Cambridge, MA, 1960) policy iteration method. We demonstrate empirically that the algorithm finds the optimal deterministic policy for over 96% of the problem instances generated. For large scale problem instances, we demonstrate that the average cost associated with the local optimal policy is lower than the average cost associated with an integer rounded policy produced by the algorithm of Serin and Kulkarni Math Methods Oper Res 61 (2005) 311–328. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/nav.20329</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-069X |
ispartof | Naval research logistics, 2009-02, Vol.56 (1), p.86-92 |
issn | 0894-069X 1520-6750 |
language | eng |
recordid | cdi_proquest_miscellaneous_32983188 |
source | Wiley Online Library |
subjects | heuristics Markov Decision process optimal control |
title | Technical note: A computationally efficient algorithm for undiscounted Markov decision processes with restricted observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Technical%20note:%20A%20computationally%20efficient%20algorithm%20for%20undiscounted%20Markov%20decision%20processes%20with%20restricted%20observations&rft.jtitle=Naval%20research%20logistics&rft.au=Davis,%20Lauren%20B.&rft.date=2009-02&rft.volume=56&rft.issue=1&rft.spage=86&rft.epage=92&rft.pages=86-92&rft.issn=0894-069X&rft.eissn=1520-6750&rft_id=info:doi/10.1002/nav.20329&rft_dat=%3Cproquest_cross%3E32983188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32983188&rft_id=info:pmid/&rfr_iscdi=true |