Effect of an Organically Modified Nanoclay on Low-Surface-Energy Materials of Polybenzoxazine

Novel low surface free energy materials of polybenzoxazine/organically modified silicate nanocomposites have been prepared and characterized. The CPC (cetylpyridinium chloride)/clay10%/poly(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine) (PP‐a) material possesses an extremely low surface free energy (12.7...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular rapid communications. 2008-07, Vol.29 (14), p.1216-1220
Hauptverfasser: Fu, Huei-Kuan, Huang, Chih-Feng, Kuo, Shiao-Wei, Lin, Han-Ching, Yei, Ding-Ru, Chang, Feng-Chih
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1220
container_issue 14
container_start_page 1216
container_title Macromolecular rapid communications.
container_volume 29
creator Fu, Huei-Kuan
Huang, Chih-Feng
Kuo, Shiao-Wei
Lin, Han-Ching
Yei, Ding-Ru
Chang, Feng-Chih
description Novel low surface free energy materials of polybenzoxazine/organically modified silicate nanocomposites have been prepared and characterized. The CPC (cetylpyridinium chloride)/clay10%/poly(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine) (PP‐a) material possesses an extremely low surface free energy (12.7 mJ · m−2) after 4 h curing at 200 °C, which is even lower than that of poly(tetrafluoroethylene) (22.0 mJ · m−2) calculated on the basis of the three‐liquid geometric method. X‐Ray photoelectron spectroscopy (XPS) shows a higher silicon content on the surface of the nanocomposites than for an average composition, which implies that the clay is more preferentially enriched on the outermost layer. In addition, the glass transition temperature (Tg) of the polybenzoxazine (PP‐a) in the nanocomposite is 22.6 °C higher and its thermal decomposition temperature is also 31.5 °C higher than the pure PP‐a. This finding provides a simple way to prepare low surface energy and high thermal stability materials.
doi_str_mv 10.1002/marc.200800092
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32882377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32882377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4252-ac3c628991260d676c7336011bbed02d1e272883f2414938f63883ac749d7bc93</originalsourceid><addsrcrecordid>eNqFkEtPAyEURidGE59b17PR3dTLZToMS9PUR9LWt64MoQwYdASFNjr99dLUNO5ccck93wc5WXZIoEcA8ORdBtVDgBoAOG5kO6SPpKAc2WaaAbEglFbb2W6MrwmpS8Cd7HlojFaz3JtcuvwqvEhnlWzbLh_7xhqrm3winVet7HLv8pH_Ku7mwUili6HT4SVxcqaDlW1cdlz7tptqt_DfcmGd3s-2TNrog99zL3s4G94PLorR1fnl4HRUqBL7WEhFVYU15wQraCpWKZZ-CoRMp7oBbIhGhnVNDZak5LQ2FU03qVjJGzZVnO5lx6vej-A_5zrOxLuNSretdNrPo6ApjZSxBPZWoAo-xqCN-Ag2iesEAbG0KJYWxdpiChz9NsuYvJggnbJxnULoAwWsEsdX3JdtdfdPqxif3g7-vlGssjbO9Pc6K8ObqBhlffE0ORf3fMxv4PFRAP0BXUKRgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32882377</pqid></control><display><type>article</type><title>Effect of an Organically Modified Nanoclay on Low-Surface-Energy Materials of Polybenzoxazine</title><source>Wiley Online Library Journals</source><creator>Fu, Huei-Kuan ; Huang, Chih-Feng ; Kuo, Shiao-Wei ; Lin, Han-Ching ; Yei, Ding-Ru ; Chang, Feng-Chih</creator><creatorcontrib>Fu, Huei-Kuan ; Huang, Chih-Feng ; Kuo, Shiao-Wei ; Lin, Han-Ching ; Yei, Ding-Ru ; Chang, Feng-Chih</creatorcontrib><description>Novel low surface free energy materials of polybenzoxazine/organically modified silicate nanocomposites have been prepared and characterized. The CPC (cetylpyridinium chloride)/clay10%/poly(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine) (PP‐a) material possesses an extremely low surface free energy (12.7 mJ · m−2) after 4 h curing at 200 °C, which is even lower than that of poly(tetrafluoroethylene) (22.0 mJ · m−2) calculated on the basis of the three‐liquid geometric method. X‐Ray photoelectron spectroscopy (XPS) shows a higher silicon content on the surface of the nanocomposites than for an average composition, which implies that the clay is more preferentially enriched on the outermost layer. In addition, the glass transition temperature (Tg) of the polybenzoxazine (PP‐a) in the nanocomposite is 22.6 °C higher and its thermal decomposition temperature is also 31.5 °C higher than the pure PP‐a. This finding provides a simple way to prepare low surface energy and high thermal stability materials.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.200800092</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; clay ; Composites ; Exact sciences and technology ; Forms of application and semi-finished materials ; low surface free energy ; nanocomposites ; polybenzoxazine ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>Macromolecular rapid communications., 2008-07, Vol.29 (14), p.1216-1220</ispartof><rights>Copyright © 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4252-ac3c628991260d676c7336011bbed02d1e272883f2414938f63883ac749d7bc93</citedby><cites>FETCH-LOGICAL-c4252-ac3c628991260d676c7336011bbed02d1e272883f2414938f63883ac749d7bc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmarc.200800092$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmarc.200800092$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20503026$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Huei-Kuan</creatorcontrib><creatorcontrib>Huang, Chih-Feng</creatorcontrib><creatorcontrib>Kuo, Shiao-Wei</creatorcontrib><creatorcontrib>Lin, Han-Ching</creatorcontrib><creatorcontrib>Yei, Ding-Ru</creatorcontrib><creatorcontrib>Chang, Feng-Chih</creatorcontrib><title>Effect of an Organically Modified Nanoclay on Low-Surface-Energy Materials of Polybenzoxazine</title><title>Macromolecular rapid communications.</title><addtitle>Macromol. Rapid Commun</addtitle><description>Novel low surface free energy materials of polybenzoxazine/organically modified silicate nanocomposites have been prepared and characterized. The CPC (cetylpyridinium chloride)/clay10%/poly(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine) (PP‐a) material possesses an extremely low surface free energy (12.7 mJ · m−2) after 4 h curing at 200 °C, which is even lower than that of poly(tetrafluoroethylene) (22.0 mJ · m−2) calculated on the basis of the three‐liquid geometric method. X‐Ray photoelectron spectroscopy (XPS) shows a higher silicon content on the surface of the nanocomposites than for an average composition, which implies that the clay is more preferentially enriched on the outermost layer. In addition, the glass transition temperature (Tg) of the polybenzoxazine (PP‐a) in the nanocomposite is 22.6 °C higher and its thermal decomposition temperature is also 31.5 °C higher than the pure PP‐a. This finding provides a simple way to prepare low surface energy and high thermal stability materials.</description><subject>Applied sciences</subject><subject>clay</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>low surface free energy</subject><subject>nanocomposites</subject><subject>polybenzoxazine</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPAyEURidGE59b17PR3dTLZToMS9PUR9LWt64MoQwYdASFNjr99dLUNO5ccck93wc5WXZIoEcA8ORdBtVDgBoAOG5kO6SPpKAc2WaaAbEglFbb2W6MrwmpS8Cd7HlojFaz3JtcuvwqvEhnlWzbLh_7xhqrm3winVet7HLv8pH_Ku7mwUili6HT4SVxcqaDlW1cdlz7tptqt_DfcmGd3s-2TNrog99zL3s4G94PLorR1fnl4HRUqBL7WEhFVYU15wQraCpWKZZ-CoRMp7oBbIhGhnVNDZak5LQ2FU03qVjJGzZVnO5lx6vej-A_5zrOxLuNSretdNrPo6ApjZSxBPZWoAo-xqCN-Ag2iesEAbG0KJYWxdpiChz9NsuYvJggnbJxnULoAwWsEsdX3JdtdfdPqxif3g7-vlGssjbO9Pc6K8ObqBhlffE0ORf3fMxv4PFRAP0BXUKRgw</recordid><startdate>20080716</startdate><enddate>20080716</enddate><creator>Fu, Huei-Kuan</creator><creator>Huang, Chih-Feng</creator><creator>Kuo, Shiao-Wei</creator><creator>Lin, Han-Ching</creator><creator>Yei, Ding-Ru</creator><creator>Chang, Feng-Chih</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20080716</creationdate><title>Effect of an Organically Modified Nanoclay on Low-Surface-Energy Materials of Polybenzoxazine</title><author>Fu, Huei-Kuan ; Huang, Chih-Feng ; Kuo, Shiao-Wei ; Lin, Han-Ching ; Yei, Ding-Ru ; Chang, Feng-Chih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4252-ac3c628991260d676c7336011bbed02d1e272883f2414938f63883ac749d7bc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>clay</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>low surface free energy</topic><topic>nanocomposites</topic><topic>polybenzoxazine</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Huei-Kuan</creatorcontrib><creatorcontrib>Huang, Chih-Feng</creatorcontrib><creatorcontrib>Kuo, Shiao-Wei</creatorcontrib><creatorcontrib>Lin, Han-Ching</creatorcontrib><creatorcontrib>Yei, Ding-Ru</creatorcontrib><creatorcontrib>Chang, Feng-Chih</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Huei-Kuan</au><au>Huang, Chih-Feng</au><au>Kuo, Shiao-Wei</au><au>Lin, Han-Ching</au><au>Yei, Ding-Ru</au><au>Chang, Feng-Chih</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of an Organically Modified Nanoclay on Low-Surface-Energy Materials of Polybenzoxazine</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol. Rapid Commun</addtitle><date>2008-07-16</date><risdate>2008</risdate><volume>29</volume><issue>14</issue><spage>1216</spage><epage>1220</epage><pages>1216-1220</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>Novel low surface free energy materials of polybenzoxazine/organically modified silicate nanocomposites have been prepared and characterized. The CPC (cetylpyridinium chloride)/clay10%/poly(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine) (PP‐a) material possesses an extremely low surface free energy (12.7 mJ · m−2) after 4 h curing at 200 °C, which is even lower than that of poly(tetrafluoroethylene) (22.0 mJ · m−2) calculated on the basis of the three‐liquid geometric method. X‐Ray photoelectron spectroscopy (XPS) shows a higher silicon content on the surface of the nanocomposites than for an average composition, which implies that the clay is more preferentially enriched on the outermost layer. In addition, the glass transition temperature (Tg) of the polybenzoxazine (PP‐a) in the nanocomposite is 22.6 °C higher and its thermal decomposition temperature is also 31.5 °C higher than the pure PP‐a. This finding provides a simple way to prepare low surface energy and high thermal stability materials.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/marc.200800092</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-1336
ispartof Macromolecular rapid communications., 2008-07, Vol.29 (14), p.1216-1220
issn 1022-1336
1521-3927
language eng
recordid cdi_proquest_miscellaneous_32882377
source Wiley Online Library Journals
subjects Applied sciences
clay
Composites
Exact sciences and technology
Forms of application and semi-finished materials
low surface free energy
nanocomposites
polybenzoxazine
Polymer industry, paints, wood
Technology of polymers
title Effect of an Organically Modified Nanoclay on Low-Surface-Energy Materials of Polybenzoxazine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A57%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20an%20Organically%20Modified%20Nanoclay%20on%20Low-Surface-Energy%20Materials%20of%20Polybenzoxazine&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Fu,%20Huei-Kuan&rft.date=2008-07-16&rft.volume=29&rft.issue=14&rft.spage=1216&rft.epage=1220&rft.pages=1216-1220&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.200800092&rft_dat=%3Cproquest_cross%3E32882377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32882377&rft_id=info:pmid/&rfr_iscdi=true