Effect of an Organically Modified Nanoclay on Low-Surface-Energy Materials of Polybenzoxazine
Novel low surface free energy materials of polybenzoxazine/organically modified silicate nanocomposites have been prepared and characterized. The CPC (cetylpyridinium chloride)/clay10%/poly(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine) (PP‐a) material possesses an extremely low surface free energy (12.7...
Gespeichert in:
Veröffentlicht in: | Macromolecular rapid communications. 2008-07, Vol.29 (14), p.1216-1220 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1220 |
---|---|
container_issue | 14 |
container_start_page | 1216 |
container_title | Macromolecular rapid communications. |
container_volume | 29 |
creator | Fu, Huei-Kuan Huang, Chih-Feng Kuo, Shiao-Wei Lin, Han-Ching Yei, Ding-Ru Chang, Feng-Chih |
description | Novel low surface free energy materials of polybenzoxazine/organically modified silicate nanocomposites have been prepared and characterized. The CPC (cetylpyridinium chloride)/clay10%/poly(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine) (PP‐a) material possesses an extremely low surface free energy (12.7 mJ · m−2) after 4 h curing at 200 °C, which is even lower than that of poly(tetrafluoroethylene) (22.0 mJ · m−2) calculated on the basis of the three‐liquid geometric method. X‐Ray photoelectron spectroscopy (XPS) shows a higher silicon content on the surface of the nanocomposites than for an average composition, which implies that the clay is more preferentially enriched on the outermost layer. In addition, the glass transition temperature (Tg) of the polybenzoxazine (PP‐a) in the nanocomposite is 22.6 °C higher and its thermal decomposition temperature is also 31.5 °C higher than the pure PP‐a. This finding provides a simple way to prepare low surface energy and high thermal stability materials. |
doi_str_mv | 10.1002/marc.200800092 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32882377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32882377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4252-ac3c628991260d676c7336011bbed02d1e272883f2414938f63883ac749d7bc93</originalsourceid><addsrcrecordid>eNqFkEtPAyEURidGE59b17PR3dTLZToMS9PUR9LWt64MoQwYdASFNjr99dLUNO5ccck93wc5WXZIoEcA8ORdBtVDgBoAOG5kO6SPpKAc2WaaAbEglFbb2W6MrwmpS8Cd7HlojFaz3JtcuvwqvEhnlWzbLh_7xhqrm3winVet7HLv8pH_Ku7mwUili6HT4SVxcqaDlW1cdlz7tptqt_DfcmGd3s-2TNrog99zL3s4G94PLorR1fnl4HRUqBL7WEhFVYU15wQraCpWKZZ-CoRMp7oBbIhGhnVNDZak5LQ2FU03qVjJGzZVnO5lx6vej-A_5zrOxLuNSretdNrPo6ApjZSxBPZWoAo-xqCN-Ag2iesEAbG0KJYWxdpiChz9NsuYvJggnbJxnULoAwWsEsdX3JdtdfdPqxif3g7-vlGssjbO9Pc6K8ObqBhlffE0ORf3fMxv4PFRAP0BXUKRgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32882377</pqid></control><display><type>article</type><title>Effect of an Organically Modified Nanoclay on Low-Surface-Energy Materials of Polybenzoxazine</title><source>Wiley Online Library Journals</source><creator>Fu, Huei-Kuan ; Huang, Chih-Feng ; Kuo, Shiao-Wei ; Lin, Han-Ching ; Yei, Ding-Ru ; Chang, Feng-Chih</creator><creatorcontrib>Fu, Huei-Kuan ; Huang, Chih-Feng ; Kuo, Shiao-Wei ; Lin, Han-Ching ; Yei, Ding-Ru ; Chang, Feng-Chih</creatorcontrib><description>Novel low surface free energy materials of polybenzoxazine/organically modified silicate nanocomposites have been prepared and characterized. The CPC (cetylpyridinium chloride)/clay10%/poly(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine) (PP‐a) material possesses an extremely low surface free energy (12.7 mJ · m−2) after 4 h curing at 200 °C, which is even lower than that of poly(tetrafluoroethylene) (22.0 mJ · m−2) calculated on the basis of the three‐liquid geometric method. X‐Ray photoelectron spectroscopy (XPS) shows a higher silicon content on the surface of the nanocomposites than for an average composition, which implies that the clay is more preferentially enriched on the outermost layer. In addition, the glass transition temperature (Tg) of the polybenzoxazine (PP‐a) in the nanocomposite is 22.6 °C higher and its thermal decomposition temperature is also 31.5 °C higher than the pure PP‐a. This finding provides a simple way to prepare low surface energy and high thermal stability materials.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.200800092</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; clay ; Composites ; Exact sciences and technology ; Forms of application and semi-finished materials ; low surface free energy ; nanocomposites ; polybenzoxazine ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>Macromolecular rapid communications., 2008-07, Vol.29 (14), p.1216-1220</ispartof><rights>Copyright © 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4252-ac3c628991260d676c7336011bbed02d1e272883f2414938f63883ac749d7bc93</citedby><cites>FETCH-LOGICAL-c4252-ac3c628991260d676c7336011bbed02d1e272883f2414938f63883ac749d7bc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmarc.200800092$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmarc.200800092$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20503026$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Huei-Kuan</creatorcontrib><creatorcontrib>Huang, Chih-Feng</creatorcontrib><creatorcontrib>Kuo, Shiao-Wei</creatorcontrib><creatorcontrib>Lin, Han-Ching</creatorcontrib><creatorcontrib>Yei, Ding-Ru</creatorcontrib><creatorcontrib>Chang, Feng-Chih</creatorcontrib><title>Effect of an Organically Modified Nanoclay on Low-Surface-Energy Materials of Polybenzoxazine</title><title>Macromolecular rapid communications.</title><addtitle>Macromol. Rapid Commun</addtitle><description>Novel low surface free energy materials of polybenzoxazine/organically modified silicate nanocomposites have been prepared and characterized. The CPC (cetylpyridinium chloride)/clay10%/poly(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine) (PP‐a) material possesses an extremely low surface free energy (12.7 mJ · m−2) after 4 h curing at 200 °C, which is even lower than that of poly(tetrafluoroethylene) (22.0 mJ · m−2) calculated on the basis of the three‐liquid geometric method. X‐Ray photoelectron spectroscopy (XPS) shows a higher silicon content on the surface of the nanocomposites than for an average composition, which implies that the clay is more preferentially enriched on the outermost layer. In addition, the glass transition temperature (Tg) of the polybenzoxazine (PP‐a) in the nanocomposite is 22.6 °C higher and its thermal decomposition temperature is also 31.5 °C higher than the pure PP‐a. This finding provides a simple way to prepare low surface energy and high thermal stability materials.</description><subject>Applied sciences</subject><subject>clay</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>low surface free energy</subject><subject>nanocomposites</subject><subject>polybenzoxazine</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPAyEURidGE59b17PR3dTLZToMS9PUR9LWt64MoQwYdASFNjr99dLUNO5ccck93wc5WXZIoEcA8ORdBtVDgBoAOG5kO6SPpKAc2WaaAbEglFbb2W6MrwmpS8Cd7HlojFaz3JtcuvwqvEhnlWzbLh_7xhqrm3winVet7HLv8pH_Ku7mwUili6HT4SVxcqaDlW1cdlz7tptqt_DfcmGd3s-2TNrog99zL3s4G94PLorR1fnl4HRUqBL7WEhFVYU15wQraCpWKZZ-CoRMp7oBbIhGhnVNDZak5LQ2FU03qVjJGzZVnO5lx6vej-A_5zrOxLuNSretdNrPo6ApjZSxBPZWoAo-xqCN-Ag2iesEAbG0KJYWxdpiChz9NsuYvJggnbJxnULoAwWsEsdX3JdtdfdPqxif3g7-vlGssjbO9Pc6K8ObqBhlffE0ORf3fMxv4PFRAP0BXUKRgw</recordid><startdate>20080716</startdate><enddate>20080716</enddate><creator>Fu, Huei-Kuan</creator><creator>Huang, Chih-Feng</creator><creator>Kuo, Shiao-Wei</creator><creator>Lin, Han-Ching</creator><creator>Yei, Ding-Ru</creator><creator>Chang, Feng-Chih</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20080716</creationdate><title>Effect of an Organically Modified Nanoclay on Low-Surface-Energy Materials of Polybenzoxazine</title><author>Fu, Huei-Kuan ; Huang, Chih-Feng ; Kuo, Shiao-Wei ; Lin, Han-Ching ; Yei, Ding-Ru ; Chang, Feng-Chih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4252-ac3c628991260d676c7336011bbed02d1e272883f2414938f63883ac749d7bc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>clay</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>low surface free energy</topic><topic>nanocomposites</topic><topic>polybenzoxazine</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Huei-Kuan</creatorcontrib><creatorcontrib>Huang, Chih-Feng</creatorcontrib><creatorcontrib>Kuo, Shiao-Wei</creatorcontrib><creatorcontrib>Lin, Han-Ching</creatorcontrib><creatorcontrib>Yei, Ding-Ru</creatorcontrib><creatorcontrib>Chang, Feng-Chih</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Huei-Kuan</au><au>Huang, Chih-Feng</au><au>Kuo, Shiao-Wei</au><au>Lin, Han-Ching</au><au>Yei, Ding-Ru</au><au>Chang, Feng-Chih</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of an Organically Modified Nanoclay on Low-Surface-Energy Materials of Polybenzoxazine</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol. Rapid Commun</addtitle><date>2008-07-16</date><risdate>2008</risdate><volume>29</volume><issue>14</issue><spage>1216</spage><epage>1220</epage><pages>1216-1220</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>Novel low surface free energy materials of polybenzoxazine/organically modified silicate nanocomposites have been prepared and characterized. The CPC (cetylpyridinium chloride)/clay10%/poly(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine) (PP‐a) material possesses an extremely low surface free energy (12.7 mJ · m−2) after 4 h curing at 200 °C, which is even lower than that of poly(tetrafluoroethylene) (22.0 mJ · m−2) calculated on the basis of the three‐liquid geometric method. X‐Ray photoelectron spectroscopy (XPS) shows a higher silicon content on the surface of the nanocomposites than for an average composition, which implies that the clay is more preferentially enriched on the outermost layer. In addition, the glass transition temperature (Tg) of the polybenzoxazine (PP‐a) in the nanocomposite is 22.6 °C higher and its thermal decomposition temperature is also 31.5 °C higher than the pure PP‐a. This finding provides a simple way to prepare low surface energy and high thermal stability materials.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/marc.200800092</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1336 |
ispartof | Macromolecular rapid communications., 2008-07, Vol.29 (14), p.1216-1220 |
issn | 1022-1336 1521-3927 |
language | eng |
recordid | cdi_proquest_miscellaneous_32882377 |
source | Wiley Online Library Journals |
subjects | Applied sciences clay Composites Exact sciences and technology Forms of application and semi-finished materials low surface free energy nanocomposites polybenzoxazine Polymer industry, paints, wood Technology of polymers |
title | Effect of an Organically Modified Nanoclay on Low-Surface-Energy Materials of Polybenzoxazine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A57%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20an%20Organically%20Modified%20Nanoclay%20on%20Low-Surface-Energy%20Materials%20of%20Polybenzoxazine&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Fu,%20Huei-Kuan&rft.date=2008-07-16&rft.volume=29&rft.issue=14&rft.spage=1216&rft.epage=1220&rft.pages=1216-1220&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.200800092&rft_dat=%3Cproquest_cross%3E32882377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32882377&rft_id=info:pmid/&rfr_iscdi=true |