H NMR study of internal motions and quantum rotational tunneling in (CH 3)4NGeCI3

(CH3)4NGeC13 is prepared, characterized and studied using 1H NMR spin lattice relaxation time and second moment to understand the internal motions and quantum rotational tunneling. Proton second moment is measured at 7 MHz as function of temperature in the range 300-77 K and spin lattice relaxation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry 2008-02, Vol.46 (2), p.110-114
Hauptverfasser: Mallikarjunaiah, K J, Singh, K Jugeshwar, Ramesh, K P, Damle, R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue 2
container_start_page 110
container_title Magnetic resonance in chemistry
container_volume 46
creator Mallikarjunaiah, K J
Singh, K Jugeshwar
Ramesh, K P
Damle, R
description (CH3)4NGeC13 is prepared, characterized and studied using 1H NMR spin lattice relaxation time and second moment to understand the internal motions and quantum rotational tunneling. Proton second moment is measured at 7 MHz as function of temperature in the range 300-77 K and spin lattice relaxation time (Ti) is measured at two Larmor frequencies, as a function of temperature in the range 270-17 K employing a homemade wide-line/pulsed NMR spectrometers. T1 data are analyzed in two temperature regions using relevant theoretical models. The relaxation in the higher temperatures (270-115 K) is attributed to the hindered reorientations of symmetric groups (CH3 and (CH3)4N). Broad asymmetric T1 minima observed below 115 K down to 17 K are attributed to quantum rotational tunneling of the inequivalent methyl groups.
doi_str_mv 10.1002/mrc.2097
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_32838527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32838527</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_328385273</originalsourceid><addsrcrecordid>eNqNi70KwjAURoMoWH_AR7iT6NCaNC1t56LWQUFxcJPQRqmkN9okg29vBR_A6cB3vkPIjNGAURqumrYMQpolPeKxDn4Up5c-8WgSZT6LUzYkI2MelNIsS7hHjgUc9icw1lVv0Deo0coWhYJG21qjAYEVvJxA6xpotRXftdPWIUpV470rYJEXwJfRYSvzHZ-QwU0oI6c_jsl8sz7nhf9s9ctJY69NbUqplECpnbnyMOVpHCb87-MHIFhGCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32838527</pqid></control><display><type>article</type><title>H NMR study of internal motions and quantum rotational tunneling in (CH 3)4NGeCI3</title><source>Wiley Online Library All Journals</source><creator>Mallikarjunaiah, K J ; Singh, K Jugeshwar ; Ramesh, K P ; Damle, R</creator><creatorcontrib>Mallikarjunaiah, K J ; Singh, K Jugeshwar ; Ramesh, K P ; Damle, R</creatorcontrib><description>(CH3)4NGeC13 is prepared, characterized and studied using 1H NMR spin lattice relaxation time and second moment to understand the internal motions and quantum rotational tunneling. Proton second moment is measured at 7 MHz as function of temperature in the range 300-77 K and spin lattice relaxation time (Ti) is measured at two Larmor frequencies, as a function of temperature in the range 270-17 K employing a homemade wide-line/pulsed NMR spectrometers. T1 data are analyzed in two temperature regions using relevant theoretical models. The relaxation in the higher temperatures (270-115 K) is attributed to the hindered reorientations of symmetric groups (CH3 and (CH3)4N). Broad asymmetric T1 minima observed below 115 K down to 17 K are attributed to quantum rotational tunneling of the inequivalent methyl groups.</description><identifier>ISSN: 0749-1581</identifier><identifier>EISSN: 1097-458X</identifier><identifier>DOI: 10.1002/mrc.2097</identifier><language>eng</language><ispartof>Magnetic resonance in chemistry, 2008-02, Vol.46 (2), p.110-114</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mallikarjunaiah, K J</creatorcontrib><creatorcontrib>Singh, K Jugeshwar</creatorcontrib><creatorcontrib>Ramesh, K P</creatorcontrib><creatorcontrib>Damle, R</creatorcontrib><title>H NMR study of internal motions and quantum rotational tunneling in (CH 3)4NGeCI3</title><title>Magnetic resonance in chemistry</title><description>(CH3)4NGeC13 is prepared, characterized and studied using 1H NMR spin lattice relaxation time and second moment to understand the internal motions and quantum rotational tunneling. Proton second moment is measured at 7 MHz as function of temperature in the range 300-77 K and spin lattice relaxation time (Ti) is measured at two Larmor frequencies, as a function of temperature in the range 270-17 K employing a homemade wide-line/pulsed NMR spectrometers. T1 data are analyzed in two temperature regions using relevant theoretical models. The relaxation in the higher temperatures (270-115 K) is attributed to the hindered reorientations of symmetric groups (CH3 and (CH3)4N). Broad asymmetric T1 minima observed below 115 K down to 17 K are attributed to quantum rotational tunneling of the inequivalent methyl groups.</description><issn>0749-1581</issn><issn>1097-458X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNi70KwjAURoMoWH_AR7iT6NCaNC1t56LWQUFxcJPQRqmkN9okg29vBR_A6cB3vkPIjNGAURqumrYMQpolPeKxDn4Up5c-8WgSZT6LUzYkI2MelNIsS7hHjgUc9icw1lVv0Deo0coWhYJG21qjAYEVvJxA6xpotRXftdPWIUpV470rYJEXwJfRYSvzHZ-QwU0oI6c_jsl8sz7nhf9s9ctJY69NbUqplECpnbnyMOVpHCb87-MHIFhGCw</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Mallikarjunaiah, K J</creator><creator>Singh, K Jugeshwar</creator><creator>Ramesh, K P</creator><creator>Damle, R</creator><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20080201</creationdate><title>H NMR study of internal motions and quantum rotational tunneling in (CH 3)4NGeCI3</title><author>Mallikarjunaiah, K J ; Singh, K Jugeshwar ; Ramesh, K P ; Damle, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_328385273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mallikarjunaiah, K J</creatorcontrib><creatorcontrib>Singh, K Jugeshwar</creatorcontrib><creatorcontrib>Ramesh, K P</creatorcontrib><creatorcontrib>Damle, R</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Magnetic resonance in chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mallikarjunaiah, K J</au><au>Singh, K Jugeshwar</au><au>Ramesh, K P</au><au>Damle, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H NMR study of internal motions and quantum rotational tunneling in (CH 3)4NGeCI3</atitle><jtitle>Magnetic resonance in chemistry</jtitle><date>2008-02-01</date><risdate>2008</risdate><volume>46</volume><issue>2</issue><spage>110</spage><epage>114</epage><pages>110-114</pages><issn>0749-1581</issn><eissn>1097-458X</eissn><abstract>(CH3)4NGeC13 is prepared, characterized and studied using 1H NMR spin lattice relaxation time and second moment to understand the internal motions and quantum rotational tunneling. Proton second moment is measured at 7 MHz as function of temperature in the range 300-77 K and spin lattice relaxation time (Ti) is measured at two Larmor frequencies, as a function of temperature in the range 270-17 K employing a homemade wide-line/pulsed NMR spectrometers. T1 data are analyzed in two temperature regions using relevant theoretical models. The relaxation in the higher temperatures (270-115 K) is attributed to the hindered reorientations of symmetric groups (CH3 and (CH3)4N). Broad asymmetric T1 minima observed below 115 K down to 17 K are attributed to quantum rotational tunneling of the inequivalent methyl groups.</abstract><doi>10.1002/mrc.2097</doi></addata></record>
fulltext fulltext
identifier ISSN: 0749-1581
ispartof Magnetic resonance in chemistry, 2008-02, Vol.46 (2), p.110-114
issn 0749-1581
1097-458X
language eng
recordid cdi_proquest_miscellaneous_32838527
source Wiley Online Library All Journals
title H NMR study of internal motions and quantum rotational tunneling in (CH 3)4NGeCI3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H%20NMR%20study%20of%20internal%20motions%20and%20quantum%20rotational%20tunneling%20in%20(CH%203)4NGeCI3&rft.jtitle=Magnetic%20resonance%20in%20chemistry&rft.au=Mallikarjunaiah,%20K%20J&rft.date=2008-02-01&rft.volume=46&rft.issue=2&rft.spage=110&rft.epage=114&rft.pages=110-114&rft.issn=0749-1581&rft.eissn=1097-458X&rft_id=info:doi/10.1002/mrc.2097&rft_dat=%3Cproquest%3E32838527%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32838527&rft_id=info:pmid/&rfr_iscdi=true