Effects of heat treatments on the microstructures and mechanical properties of Mg–3Nd–0.2Zn–0.4Zr (wt.%) alloy

Microstructure and mechanical properties of as-cast and different heat treated Mg–3Nd–0.2Zn–0.4Zr (wt.%) (NZ30K) alloys were investigated. The as-cast alloy was comprised of α magnesium matrix and Mg 12Nd eutectic compounds. After solution treatment at 540 °C for 6 h, the eutectic compounds dissolve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2008-07, Vol.486 (1), p.183-192
Hauptverfasser: Penghuai, Fu, Liming, Peng, Haiyan, Jiang, Jianwei, Chang, Chunquan, Zhai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microstructure and mechanical properties of as-cast and different heat treated Mg–3Nd–0.2Zn–0.4Zr (wt.%) (NZ30K) alloys were investigated. The as-cast alloy was comprised of α magnesium matrix and Mg 12Nd eutectic compounds. After solution treatment at 540 °C for 6 h, the eutectic compounds dissolved into the matrix and small Zr-containing particles precipitated at grain interiors. Further aging at low temperatures led to plate-shaped metastable precipitates, which strengthened the alloy. Peak-aged at 200 °C for 10–16 h, fine β″ particles with DO 19 structure was the dominant strengthening phase. The alloy had ultimate tensile strength (UTS) and elongation of 300–305 MPa and 11%, respectively. Aged at 250 °C for 10 h, coarse β′ particles with fcc structure was the dominant strengthening phase. The alloy showed UTS and elongation of 265 MPa and 20%, respectively. Yield strengths (YS) of these two aged conditions were in the same level, about 140 MPa. Precipitation strengthening was the largest contributor (about 60%) to the strength in these two aged conditions. The hardness of aged NZ30K alloy seemed to correspond to UTS not YS.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2007.08.064