Data processing for real-time construction site spatial modeling
The ability to quickly model work spaces using high frequency 3D imaging sensors has great potential for improving construction site resource management. Yet, the rapid processing of tens of thousands of range points, which is a crucial component of the spatial modeling process, is still an unsolved...
Gespeichert in:
Veröffentlicht in: | Automation in construction 2008-07, Vol.17 (5), p.526-535 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 535 |
---|---|
container_issue | 5 |
container_start_page | 526 |
container_title | Automation in construction |
container_volume | 17 |
creator | Gong, Jie Caldas, Carlos H. |
description | The ability to quickly model work spaces using high frequency 3D imaging sensors has great potential for improving construction site resource management. Yet, the rapid processing of tens of thousands of range points, which is a crucial component of the spatial modeling process, is still an unsolved problem requiring further investigation. This paper describes a testbed that was developed to study the performance of various algorithms for processing range point data captured using 3D imaging sensors. Results of applying different combinations of data filtering, transformation, and segmentation techniques are also presented. Some of the algorithms investigated proved to be robust to sensor noise and able to accurately and rapidly process high frequency range data. |
doi_str_mv | 10.1016/j.autcon.2007.09.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32815199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926580507001136</els_id><sourcerecordid>32815199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-4f4a18627719a55470a41379ee6704a403e74273a9a6559f194f46d9d6415a9b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxiywJZwdhw7XhCIb6kSC8zW4VyQqzQptovEv8dVK0amW57nvbuXsXMOFQeurpYVbpKbxkoA6ApMBSAO2Iy3WpS6NfyQzcAIVTYtNMfsJMYlZBCUmbGbe0xYrMPkKEY_fhb9FIpAOJTJr6jIoTGFjUt-GovoExVxjcnjUKymjoYsnLKjHodIZ_s5Z--PD293z-Xi9enl7nZROlnXqZS9RN4qoTU32DRSA0pea0OkNEiUUJOWQtdoUDWN6bnJhupMpyRv0HzUc3a5y823fm0oJrvy0dEw4EjTJtpatLzhxmRQ7kAXphgD9XYd_ArDj-Vgt3XZpd3VZbd1WTA215W1i30-RodDH3B0Pv65AoSSyqjMXe84ys9-ewo2Ok-jo84Hcsl2k_9_0S_CMoE6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32815199</pqid></control><display><type>article</type><title>Data processing for real-time construction site spatial modeling</title><source>Elsevier ScienceDirect Journals</source><creator>Gong, Jie ; Caldas, Carlos H.</creator><creatorcontrib>Gong, Jie ; Caldas, Carlos H.</creatorcontrib><description>The ability to quickly model work spaces using high frequency 3D imaging sensors has great potential for improving construction site resource management. Yet, the rapid processing of tens of thousands of range points, which is a crucial component of the spatial modeling process, is still an unsolved problem requiring further investigation. This paper describes a testbed that was developed to study the performance of various algorithms for processing range point data captured using 3D imaging sensors. Results of applying different combinations of data filtering, transformation, and segmentation techniques are also presented. Some of the algorithms investigated proved to be robust to sensor noise and able to accurately and rapidly process high frequency range data.</description><identifier>ISSN: 0926-5805</identifier><identifier>EISSN: 1872-7891</identifier><identifier>DOI: 10.1016/j.autcon.2007.09.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>3D imaging ; Applied sciences ; Buildings. Public works ; Clustering ; Computation methods. Tables. Charts ; Construction works ; Exact sciences and technology ; Laser scanning ; Measurements. Technique of testing ; Site organization ; Spatial modeling ; Structural analysis. Stresses</subject><ispartof>Automation in construction, 2008-07, Vol.17 (5), p.526-535</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-4f4a18627719a55470a41379ee6704a403e74273a9a6559f194f46d9d6415a9b3</citedby><cites>FETCH-LOGICAL-c433t-4f4a18627719a55470a41379ee6704a403e74273a9a6559f194f46d9d6415a9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.autcon.2007.09.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20264696$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Jie</creatorcontrib><creatorcontrib>Caldas, Carlos H.</creatorcontrib><title>Data processing for real-time construction site spatial modeling</title><title>Automation in construction</title><description>The ability to quickly model work spaces using high frequency 3D imaging sensors has great potential for improving construction site resource management. Yet, the rapid processing of tens of thousands of range points, which is a crucial component of the spatial modeling process, is still an unsolved problem requiring further investigation. This paper describes a testbed that was developed to study the performance of various algorithms for processing range point data captured using 3D imaging sensors. Results of applying different combinations of data filtering, transformation, and segmentation techniques are also presented. Some of the algorithms investigated proved to be robust to sensor noise and able to accurately and rapidly process high frequency range data.</description><subject>3D imaging</subject><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Clustering</subject><subject>Computation methods. Tables. Charts</subject><subject>Construction works</subject><subject>Exact sciences and technology</subject><subject>Laser scanning</subject><subject>Measurements. Technique of testing</subject><subject>Site organization</subject><subject>Spatial modeling</subject><subject>Structural analysis. Stresses</subject><issn>0926-5805</issn><issn>1872-7891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxiywJZwdhw7XhCIb6kSC8zW4VyQqzQptovEv8dVK0amW57nvbuXsXMOFQeurpYVbpKbxkoA6ApMBSAO2Iy3WpS6NfyQzcAIVTYtNMfsJMYlZBCUmbGbe0xYrMPkKEY_fhb9FIpAOJTJr6jIoTGFjUt-GovoExVxjcnjUKymjoYsnLKjHodIZ_s5Z--PD293z-Xi9enl7nZROlnXqZS9RN4qoTU32DRSA0pea0OkNEiUUJOWQtdoUDWN6bnJhupMpyRv0HzUc3a5y823fm0oJrvy0dEw4EjTJtpatLzhxmRQ7kAXphgD9XYd_ArDj-Vgt3XZpd3VZbd1WTA215W1i30-RodDH3B0Pv65AoSSyqjMXe84ys9-ewo2Ok-jo84Hcsl2k_9_0S_CMoE6</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Gong, Jie</creator><creator>Caldas, Carlos H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080701</creationdate><title>Data processing for real-time construction site spatial modeling</title><author>Gong, Jie ; Caldas, Carlos H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-4f4a18627719a55470a41379ee6704a403e74273a9a6559f194f46d9d6415a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>3D imaging</topic><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Clustering</topic><topic>Computation methods. Tables. Charts</topic><topic>Construction works</topic><topic>Exact sciences and technology</topic><topic>Laser scanning</topic><topic>Measurements. Technique of testing</topic><topic>Site organization</topic><topic>Spatial modeling</topic><topic>Structural analysis. Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Jie</creatorcontrib><creatorcontrib>Caldas, Carlos H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automation in construction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Jie</au><au>Caldas, Carlos H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data processing for real-time construction site spatial modeling</atitle><jtitle>Automation in construction</jtitle><date>2008-07-01</date><risdate>2008</risdate><volume>17</volume><issue>5</issue><spage>526</spage><epage>535</epage><pages>526-535</pages><issn>0926-5805</issn><eissn>1872-7891</eissn><abstract>The ability to quickly model work spaces using high frequency 3D imaging sensors has great potential for improving construction site resource management. Yet, the rapid processing of tens of thousands of range points, which is a crucial component of the spatial modeling process, is still an unsolved problem requiring further investigation. This paper describes a testbed that was developed to study the performance of various algorithms for processing range point data captured using 3D imaging sensors. Results of applying different combinations of data filtering, transformation, and segmentation techniques are also presented. Some of the algorithms investigated proved to be robust to sensor noise and able to accurately and rapidly process high frequency range data.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.autcon.2007.09.002</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-5805 |
ispartof | Automation in construction, 2008-07, Vol.17 (5), p.526-535 |
issn | 0926-5805 1872-7891 |
language | eng |
recordid | cdi_proquest_miscellaneous_32815199 |
source | Elsevier ScienceDirect Journals |
subjects | 3D imaging Applied sciences Buildings. Public works Clustering Computation methods. Tables. Charts Construction works Exact sciences and technology Laser scanning Measurements. Technique of testing Site organization Spatial modeling Structural analysis. Stresses |
title | Data processing for real-time construction site spatial modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20processing%20for%20real-time%20construction%20site%20spatial%20modeling&rft.jtitle=Automation%20in%20construction&rft.au=Gong,%20Jie&rft.date=2008-07-01&rft.volume=17&rft.issue=5&rft.spage=526&rft.epage=535&rft.pages=526-535&rft.issn=0926-5805&rft.eissn=1872-7891&rft_id=info:doi/10.1016/j.autcon.2007.09.002&rft_dat=%3Cproquest_cross%3E32815199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32815199&rft_id=info:pmid/&rft_els_id=S0926580507001136&rfr_iscdi=true |