Data processing for real-time construction site spatial modeling

The ability to quickly model work spaces using high frequency 3D imaging sensors has great potential for improving construction site resource management. Yet, the rapid processing of tens of thousands of range points, which is a crucial component of the spatial modeling process, is still an unsolved...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automation in construction 2008-07, Vol.17 (5), p.526-535
Hauptverfasser: Gong, Jie, Caldas, Carlos H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 535
container_issue 5
container_start_page 526
container_title Automation in construction
container_volume 17
creator Gong, Jie
Caldas, Carlos H.
description The ability to quickly model work spaces using high frequency 3D imaging sensors has great potential for improving construction site resource management. Yet, the rapid processing of tens of thousands of range points, which is a crucial component of the spatial modeling process, is still an unsolved problem requiring further investigation. This paper describes a testbed that was developed to study the performance of various algorithms for processing range point data captured using 3D imaging sensors. Results of applying different combinations of data filtering, transformation, and segmentation techniques are also presented. Some of the algorithms investigated proved to be robust to sensor noise and able to accurately and rapidly process high frequency range data.
doi_str_mv 10.1016/j.autcon.2007.09.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32815199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926580507001136</els_id><sourcerecordid>32815199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-4f4a18627719a55470a41379ee6704a403e74273a9a6559f194f46d9d6415a9b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxiywJZwdhw7XhCIb6kSC8zW4VyQqzQptovEv8dVK0amW57nvbuXsXMOFQeurpYVbpKbxkoA6ApMBSAO2Iy3WpS6NfyQzcAIVTYtNMfsJMYlZBCUmbGbe0xYrMPkKEY_fhb9FIpAOJTJr6jIoTGFjUt-GovoExVxjcnjUKymjoYsnLKjHodIZ_s5Z--PD293z-Xi9enl7nZROlnXqZS9RN4qoTU32DRSA0pea0OkNEiUUJOWQtdoUDWN6bnJhupMpyRv0HzUc3a5y823fm0oJrvy0dEw4EjTJtpatLzhxmRQ7kAXphgD9XYd_ArDj-Vgt3XZpd3VZbd1WTA215W1i30-RodDH3B0Pv65AoSSyqjMXe84ys9-ewo2Ok-jo84Hcsl2k_9_0S_CMoE6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32815199</pqid></control><display><type>article</type><title>Data processing for real-time construction site spatial modeling</title><source>Elsevier ScienceDirect Journals</source><creator>Gong, Jie ; Caldas, Carlos H.</creator><creatorcontrib>Gong, Jie ; Caldas, Carlos H.</creatorcontrib><description>The ability to quickly model work spaces using high frequency 3D imaging sensors has great potential for improving construction site resource management. Yet, the rapid processing of tens of thousands of range points, which is a crucial component of the spatial modeling process, is still an unsolved problem requiring further investigation. This paper describes a testbed that was developed to study the performance of various algorithms for processing range point data captured using 3D imaging sensors. Results of applying different combinations of data filtering, transformation, and segmentation techniques are also presented. Some of the algorithms investigated proved to be robust to sensor noise and able to accurately and rapidly process high frequency range data.</description><identifier>ISSN: 0926-5805</identifier><identifier>EISSN: 1872-7891</identifier><identifier>DOI: 10.1016/j.autcon.2007.09.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>3D imaging ; Applied sciences ; Buildings. Public works ; Clustering ; Computation methods. Tables. Charts ; Construction works ; Exact sciences and technology ; Laser scanning ; Measurements. Technique of testing ; Site organization ; Spatial modeling ; Structural analysis. Stresses</subject><ispartof>Automation in construction, 2008-07, Vol.17 (5), p.526-535</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-4f4a18627719a55470a41379ee6704a403e74273a9a6559f194f46d9d6415a9b3</citedby><cites>FETCH-LOGICAL-c433t-4f4a18627719a55470a41379ee6704a403e74273a9a6559f194f46d9d6415a9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.autcon.2007.09.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20264696$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Jie</creatorcontrib><creatorcontrib>Caldas, Carlos H.</creatorcontrib><title>Data processing for real-time construction site spatial modeling</title><title>Automation in construction</title><description>The ability to quickly model work spaces using high frequency 3D imaging sensors has great potential for improving construction site resource management. Yet, the rapid processing of tens of thousands of range points, which is a crucial component of the spatial modeling process, is still an unsolved problem requiring further investigation. This paper describes a testbed that was developed to study the performance of various algorithms for processing range point data captured using 3D imaging sensors. Results of applying different combinations of data filtering, transformation, and segmentation techniques are also presented. Some of the algorithms investigated proved to be robust to sensor noise and able to accurately and rapidly process high frequency range data.</description><subject>3D imaging</subject><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Clustering</subject><subject>Computation methods. Tables. Charts</subject><subject>Construction works</subject><subject>Exact sciences and technology</subject><subject>Laser scanning</subject><subject>Measurements. Technique of testing</subject><subject>Site organization</subject><subject>Spatial modeling</subject><subject>Structural analysis. Stresses</subject><issn>0926-5805</issn><issn>1872-7891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxiywJZwdhw7XhCIb6kSC8zW4VyQqzQptovEv8dVK0amW57nvbuXsXMOFQeurpYVbpKbxkoA6ApMBSAO2Iy3WpS6NfyQzcAIVTYtNMfsJMYlZBCUmbGbe0xYrMPkKEY_fhb9FIpAOJTJr6jIoTGFjUt-GovoExVxjcnjUKymjoYsnLKjHodIZ_s5Z--PD293z-Xi9enl7nZROlnXqZS9RN4qoTU32DRSA0pea0OkNEiUUJOWQtdoUDWN6bnJhupMpyRv0HzUc3a5y823fm0oJrvy0dEw4EjTJtpatLzhxmRQ7kAXphgD9XYd_ArDj-Vgt3XZpd3VZbd1WTA215W1i30-RodDH3B0Pv65AoSSyqjMXe84ys9-ewo2Ok-jo84Hcsl2k_9_0S_CMoE6</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Gong, Jie</creator><creator>Caldas, Carlos H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080701</creationdate><title>Data processing for real-time construction site spatial modeling</title><author>Gong, Jie ; Caldas, Carlos H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-4f4a18627719a55470a41379ee6704a403e74273a9a6559f194f46d9d6415a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>3D imaging</topic><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Clustering</topic><topic>Computation methods. Tables. Charts</topic><topic>Construction works</topic><topic>Exact sciences and technology</topic><topic>Laser scanning</topic><topic>Measurements. Technique of testing</topic><topic>Site organization</topic><topic>Spatial modeling</topic><topic>Structural analysis. Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Jie</creatorcontrib><creatorcontrib>Caldas, Carlos H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automation in construction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Jie</au><au>Caldas, Carlos H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data processing for real-time construction site spatial modeling</atitle><jtitle>Automation in construction</jtitle><date>2008-07-01</date><risdate>2008</risdate><volume>17</volume><issue>5</issue><spage>526</spage><epage>535</epage><pages>526-535</pages><issn>0926-5805</issn><eissn>1872-7891</eissn><abstract>The ability to quickly model work spaces using high frequency 3D imaging sensors has great potential for improving construction site resource management. Yet, the rapid processing of tens of thousands of range points, which is a crucial component of the spatial modeling process, is still an unsolved problem requiring further investigation. This paper describes a testbed that was developed to study the performance of various algorithms for processing range point data captured using 3D imaging sensors. Results of applying different combinations of data filtering, transformation, and segmentation techniques are also presented. Some of the algorithms investigated proved to be robust to sensor noise and able to accurately and rapidly process high frequency range data.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.autcon.2007.09.002</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-5805
ispartof Automation in construction, 2008-07, Vol.17 (5), p.526-535
issn 0926-5805
1872-7891
language eng
recordid cdi_proquest_miscellaneous_32815199
source Elsevier ScienceDirect Journals
subjects 3D imaging
Applied sciences
Buildings. Public works
Clustering
Computation methods. Tables. Charts
Construction works
Exact sciences and technology
Laser scanning
Measurements. Technique of testing
Site organization
Spatial modeling
Structural analysis. Stresses
title Data processing for real-time construction site spatial modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20processing%20for%20real-time%20construction%20site%20spatial%20modeling&rft.jtitle=Automation%20in%20construction&rft.au=Gong,%20Jie&rft.date=2008-07-01&rft.volume=17&rft.issue=5&rft.spage=526&rft.epage=535&rft.pages=526-535&rft.issn=0926-5805&rft.eissn=1872-7891&rft_id=info:doi/10.1016/j.autcon.2007.09.002&rft_dat=%3Cproquest_cross%3E32815199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32815199&rft_id=info:pmid/&rft_els_id=S0926580507001136&rfr_iscdi=true