Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization
A new derivative-free method is developed for solving unconstrained nonsmooth optimization problems. This method is based on the notion of a discrete gradient. It is demonstrated that the discrete gradients can be used to approximate subgradients of a broad class of nonsmooth functions. It is also s...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2008-05, Vol.137 (2), p.317-334 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 334 |
---|---|
container_issue | 2 |
container_start_page | 317 |
container_title | Journal of optimization theory and applications |
container_volume | 137 |
creator | Bagirov, A. M. Karasözen, B. Sezer, M. |
description | A new derivative-free method is developed for solving unconstrained nonsmooth optimization problems. This method is based on the notion of a discrete gradient. It is demonstrated that the discrete gradients can be used to approximate subgradients of a broad class of nonsmooth functions. It is also shown that the discrete gradients can be applied to find descent directions of nonsmooth functions. The preliminary results of numerical experiments with unconstrained nonsmooth optimization problems as well as the comparison of the proposed method with the nonsmooth optimization solver DNLP from CONOPT-GAMS and the derivative-free optimization solver CONDOR are presented. |
doi_str_mv | 10.1007/s10957-007-9335-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32800187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082200211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-710fa9f8e740739391d30653edacb981f5b4112ec1ff939deeaf4d1d35ef93e63</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWKs_wNsiKF6imWTTbLxJa6v40Yuel3R3Yre0m5psC_rrzdIiIiieMpl55mVmXkKOgV0AY-oyANNS0RhSLYSkcod0QCpBeaayXdJhjHMquND75CCEGWNMZyrtkPtBFQqPDSYjb8oK6yZ5xGbqyqtkgL5am6ZaIx16xG0-sc4nT64OC-eaaTJeNtWi-oiYqw_JnjXzgEfbt0tehjfP_Vv6MB7d9a8faJGmvKEKmDXaZqhSpoQWGkrBelJgaYqJzsDKSQrAsQBrY7VENDYtIyQx_rEnuuRso7v07m2FockXcQmcz02NbhVywTPGIFMRPP8TBJZxHi8D8C8UdE8Cj-jJD3TmVr6OG-ctoXtCtTPCBiq8C8GjzZe-Whj_HpXy1rF841jehq1juYw9p1thEwozt97URRW-GjkT8VogIsc3XIil-hX9twF-Ff8EmYekJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196596376</pqid></control><display><type>article</type><title>Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bagirov, A. M. ; Karasözen, B. ; Sezer, M.</creator><creatorcontrib>Bagirov, A. M. ; Karasözen, B. ; Sezer, M.</creatorcontrib><description>A new derivative-free method is developed for solving unconstrained nonsmooth optimization problems. This method is based on the notion of a discrete gradient. It is demonstrated that the discrete gradients can be used to approximate subgradients of a broad class of nonsmooth functions. It is also shown that the discrete gradients can be applied to find descent directions of nonsmooth functions. The preliminary results of numerical experiments with unconstrained nonsmooth optimization problems as well as the comparison of the proposed method with the nonsmooth optimization solver DNLP from CONOPT-GAMS and the derivative-free optimization solver CONDOR are presented.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-007-9335-5</identifier><identifier>CODEN: JOTABN</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Applied mathematics ; Applied sciences ; Approximation ; Calculus of Variations and Optimal Control; Optimization ; Cluster analysis ; Clustering ; Descent ; Engineering ; Exact sciences and technology ; Experiments ; Mathematical analysis ; Mathematical models ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Methods ; Operational research and scientific management ; Operational research. Management science ; Operations Research/Decision Theory ; Optimization ; Solvers ; Studies ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2008-05, Vol.137 (2), p.317-334</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><rights>2008 INIST-CNRS</rights><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-710fa9f8e740739391d30653edacb981f5b4112ec1ff939deeaf4d1d35ef93e63</citedby><cites>FETCH-LOGICAL-c442t-710fa9f8e740739391d30653edacb981f5b4112ec1ff939deeaf4d1d35ef93e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-007-9335-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-007-9335-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20339313$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bagirov, A. M.</creatorcontrib><creatorcontrib>Karasözen, B.</creatorcontrib><creatorcontrib>Sezer, M.</creatorcontrib><title>Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>A new derivative-free method is developed for solving unconstrained nonsmooth optimization problems. This method is based on the notion of a discrete gradient. It is demonstrated that the discrete gradients can be used to approximate subgradients of a broad class of nonsmooth functions. It is also shown that the discrete gradients can be applied to find descent directions of nonsmooth functions. The preliminary results of numerical experiments with unconstrained nonsmooth optimization problems as well as the comparison of the proposed method with the nonsmooth optimization solver DNLP from CONOPT-GAMS and the derivative-free optimization solver CONDOR are presented.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Descent</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Solvers</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU1LAzEQhoMoWKs_wNsiKF6imWTTbLxJa6v40Yuel3R3Yre0m5psC_rrzdIiIiieMpl55mVmXkKOgV0AY-oyANNS0RhSLYSkcod0QCpBeaayXdJhjHMquND75CCEGWNMZyrtkPtBFQqPDSYjb8oK6yZ5xGbqyqtkgL5am6ZaIx16xG0-sc4nT64OC-eaaTJeNtWi-oiYqw_JnjXzgEfbt0tehjfP_Vv6MB7d9a8faJGmvKEKmDXaZqhSpoQWGkrBelJgaYqJzsDKSQrAsQBrY7VENDYtIyQx_rEnuuRso7v07m2FockXcQmcz02NbhVywTPGIFMRPP8TBJZxHi8D8C8UdE8Cj-jJD3TmVr6OG-ctoXtCtTPCBiq8C8GjzZe-Whj_HpXy1rF841jehq1juYw9p1thEwozt97URRW-GjkT8VogIsc3XIil-hX9twF-Ff8EmYekJw</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Bagirov, A. M.</creator><creator>Karasözen, B.</creator><creator>Sezer, M.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20080501</creationdate><title>Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization</title><author>Bagirov, A. M. ; Karasözen, B. ; Sezer, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-710fa9f8e740739391d30653edacb981f5b4112ec1ff939deeaf4d1d35ef93e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Descent</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Solvers</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagirov, A. M.</creatorcontrib><creatorcontrib>Karasözen, B.</creatorcontrib><creatorcontrib>Sezer, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagirov, A. M.</au><au>Karasözen, B.</au><au>Sezer, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>137</volume><issue>2</issue><spage>317</spage><epage>334</epage><pages>317-334</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><coden>JOTABN</coden><abstract>A new derivative-free method is developed for solving unconstrained nonsmooth optimization problems. This method is based on the notion of a discrete gradient. It is demonstrated that the discrete gradients can be used to approximate subgradients of a broad class of nonsmooth functions. It is also shown that the discrete gradients can be applied to find descent directions of nonsmooth functions. The preliminary results of numerical experiments with unconstrained nonsmooth optimization problems as well as the comparison of the proposed method with the nonsmooth optimization solver DNLP from CONOPT-GAMS and the derivative-free optimization solver CONDOR are presented.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10957-007-9335-5</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2008-05, Vol.137 (2), p.317-334 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_miscellaneous_32800187 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Applications of Mathematics Applied mathematics Applied sciences Approximation Calculus of Variations and Optimal Control Optimization Cluster analysis Clustering Descent Engineering Exact sciences and technology Experiments Mathematical analysis Mathematical models Mathematical programming Mathematics Mathematics and Statistics Methods Operational research and scientific management Operational research. Management science Operations Research/Decision Theory Optimization Solvers Studies Theory of Computation |
title | Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Gradient%20Method:%20Derivative-Free%20Method%20for%20Nonsmooth%20Optimization&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Bagirov,%20A.%20M.&rft.date=2008-05-01&rft.volume=137&rft.issue=2&rft.spage=317&rft.epage=334&rft.pages=317-334&rft.issn=0022-3239&rft.eissn=1573-2878&rft.coden=JOTABN&rft_id=info:doi/10.1007/s10957-007-9335-5&rft_dat=%3Cproquest_cross%3E1082200211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196596376&rft_id=info:pmid/&rfr_iscdi=true |