Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization

A new derivative-free method is developed for solving unconstrained nonsmooth optimization problems. This method is based on the notion of a discrete gradient. It is demonstrated that the discrete gradients can be used to approximate subgradients of a broad class of nonsmooth functions. It is also s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2008-05, Vol.137 (2), p.317-334
Hauptverfasser: Bagirov, A. M., Karasözen, B., Sezer, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 2
container_start_page 317
container_title Journal of optimization theory and applications
container_volume 137
creator Bagirov, A. M.
Karasözen, B.
Sezer, M.
description A new derivative-free method is developed for solving unconstrained nonsmooth optimization problems. This method is based on the notion of a discrete gradient. It is demonstrated that the discrete gradients can be used to approximate subgradients of a broad class of nonsmooth functions. It is also shown that the discrete gradients can be applied to find descent directions of nonsmooth functions. The preliminary results of numerical experiments with unconstrained nonsmooth optimization problems as well as the comparison of the proposed method with the nonsmooth optimization solver DNLP from CONOPT-GAMS and the derivative-free optimization solver CONDOR are presented.
doi_str_mv 10.1007/s10957-007-9335-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32800187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082200211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-710fa9f8e740739391d30653edacb981f5b4112ec1ff939deeaf4d1d35ef93e63</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWKs_wNsiKF6imWTTbLxJa6v40Yuel3R3Yre0m5psC_rrzdIiIiieMpl55mVmXkKOgV0AY-oyANNS0RhSLYSkcod0QCpBeaayXdJhjHMquND75CCEGWNMZyrtkPtBFQqPDSYjb8oK6yZ5xGbqyqtkgL5am6ZaIx16xG0-sc4nT64OC-eaaTJeNtWi-oiYqw_JnjXzgEfbt0tehjfP_Vv6MB7d9a8faJGmvKEKmDXaZqhSpoQWGkrBelJgaYqJzsDKSQrAsQBrY7VENDYtIyQx_rEnuuRso7v07m2FockXcQmcz02NbhVywTPGIFMRPP8TBJZxHi8D8C8UdE8Cj-jJD3TmVr6OG-ctoXtCtTPCBiq8C8GjzZe-Whj_HpXy1rF841jehq1juYw9p1thEwozt97URRW-GjkT8VogIsc3XIil-hX9twF-Ff8EmYekJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196596376</pqid></control><display><type>article</type><title>Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bagirov, A. M. ; Karasözen, B. ; Sezer, M.</creator><creatorcontrib>Bagirov, A. M. ; Karasözen, B. ; Sezer, M.</creatorcontrib><description>A new derivative-free method is developed for solving unconstrained nonsmooth optimization problems. This method is based on the notion of a discrete gradient. It is demonstrated that the discrete gradients can be used to approximate subgradients of a broad class of nonsmooth functions. It is also shown that the discrete gradients can be applied to find descent directions of nonsmooth functions. The preliminary results of numerical experiments with unconstrained nonsmooth optimization problems as well as the comparison of the proposed method with the nonsmooth optimization solver DNLP from CONOPT-GAMS and the derivative-free optimization solver CONDOR are presented.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-007-9335-5</identifier><identifier>CODEN: JOTABN</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Applied mathematics ; Applied sciences ; Approximation ; Calculus of Variations and Optimal Control; Optimization ; Cluster analysis ; Clustering ; Descent ; Engineering ; Exact sciences and technology ; Experiments ; Mathematical analysis ; Mathematical models ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Methods ; Operational research and scientific management ; Operational research. Management science ; Operations Research/Decision Theory ; Optimization ; Solvers ; Studies ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2008-05, Vol.137 (2), p.317-334</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><rights>2008 INIST-CNRS</rights><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-710fa9f8e740739391d30653edacb981f5b4112ec1ff939deeaf4d1d35ef93e63</citedby><cites>FETCH-LOGICAL-c442t-710fa9f8e740739391d30653edacb981f5b4112ec1ff939deeaf4d1d35ef93e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-007-9335-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-007-9335-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20339313$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bagirov, A. M.</creatorcontrib><creatorcontrib>Karasözen, B.</creatorcontrib><creatorcontrib>Sezer, M.</creatorcontrib><title>Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>A new derivative-free method is developed for solving unconstrained nonsmooth optimization problems. This method is based on the notion of a discrete gradient. It is demonstrated that the discrete gradients can be used to approximate subgradients of a broad class of nonsmooth functions. It is also shown that the discrete gradients can be applied to find descent directions of nonsmooth functions. The preliminary results of numerical experiments with unconstrained nonsmooth optimization problems as well as the comparison of the proposed method with the nonsmooth optimization solver DNLP from CONOPT-GAMS and the derivative-free optimization solver CONDOR are presented.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Descent</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Solvers</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU1LAzEQhoMoWKs_wNsiKF6imWTTbLxJa6v40Yuel3R3Yre0m5psC_rrzdIiIiieMpl55mVmXkKOgV0AY-oyANNS0RhSLYSkcod0QCpBeaayXdJhjHMquND75CCEGWNMZyrtkPtBFQqPDSYjb8oK6yZ5xGbqyqtkgL5am6ZaIx16xG0-sc4nT64OC-eaaTJeNtWi-oiYqw_JnjXzgEfbt0tehjfP_Vv6MB7d9a8faJGmvKEKmDXaZqhSpoQWGkrBelJgaYqJzsDKSQrAsQBrY7VENDYtIyQx_rEnuuRso7v07m2FockXcQmcz02NbhVywTPGIFMRPP8TBJZxHi8D8C8UdE8Cj-jJD3TmVr6OG-ctoXtCtTPCBiq8C8GjzZe-Whj_HpXy1rF841jehq1juYw9p1thEwozt97URRW-GjkT8VogIsc3XIil-hX9twF-Ff8EmYekJw</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Bagirov, A. M.</creator><creator>Karasözen, B.</creator><creator>Sezer, M.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20080501</creationdate><title>Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization</title><author>Bagirov, A. M. ; Karasözen, B. ; Sezer, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-710fa9f8e740739391d30653edacb981f5b4112ec1ff939deeaf4d1d35ef93e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Descent</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Solvers</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagirov, A. M.</creatorcontrib><creatorcontrib>Karasözen, B.</creatorcontrib><creatorcontrib>Sezer, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagirov, A. M.</au><au>Karasözen, B.</au><au>Sezer, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>137</volume><issue>2</issue><spage>317</spage><epage>334</epage><pages>317-334</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><coden>JOTABN</coden><abstract>A new derivative-free method is developed for solving unconstrained nonsmooth optimization problems. This method is based on the notion of a discrete gradient. It is demonstrated that the discrete gradients can be used to approximate subgradients of a broad class of nonsmooth functions. It is also shown that the discrete gradients can be applied to find descent directions of nonsmooth functions. The preliminary results of numerical experiments with unconstrained nonsmooth optimization problems as well as the comparison of the proposed method with the nonsmooth optimization solver DNLP from CONOPT-GAMS and the derivative-free optimization solver CONDOR are presented.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10957-007-9335-5</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2008-05, Vol.137 (2), p.317-334
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_miscellaneous_32800187
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Applications of Mathematics
Applied mathematics
Applied sciences
Approximation
Calculus of Variations and Optimal Control
Optimization
Cluster analysis
Clustering
Descent
Engineering
Exact sciences and technology
Experiments
Mathematical analysis
Mathematical models
Mathematical programming
Mathematics
Mathematics and Statistics
Methods
Operational research and scientific management
Operational research. Management science
Operations Research/Decision Theory
Optimization
Solvers
Studies
Theory of Computation
title Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Gradient%20Method:%20Derivative-Free%20Method%20for%20Nonsmooth%20Optimization&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Bagirov,%20A.%20M.&rft.date=2008-05-01&rft.volume=137&rft.issue=2&rft.spage=317&rft.epage=334&rft.pages=317-334&rft.issn=0022-3239&rft.eissn=1573-2878&rft.coden=JOTABN&rft_id=info:doi/10.1007/s10957-007-9335-5&rft_dat=%3Cproquest_cross%3E1082200211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196596376&rft_id=info:pmid/&rfr_iscdi=true