Coupled simulation of microstructural formation and deformation behavior of ferrite–pearlite steel by phase-field method and homogenization method

A coupled simulation by the phase-field (PF) method and the finite element method based on the homogenization theory (FEH) is developed to predict the microstructure formations and mechanical properties of ferrite–pearlite steels. The formation of the α phase during the isothermal γ → α transformati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2008-05, Vol.480 (1), p.244-252
Hauptverfasser: Yamanaka, A., Takaki, T., Tomita, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue 1
container_start_page 244
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 480
creator Yamanaka, A.
Takaki, T.
Tomita, Y.
description A coupled simulation by the phase-field (PF) method and the finite element method based on the homogenization theory (FEH) is developed to predict the microstructure formations and mechanical properties of ferrite–pearlite steels. The formation of the α phase during the isothermal γ → α transformation is simulated by the PF method. Furthermore, the FEH analysis is performed to clarify the effects of the predicted microstructure on the deformation behavior of the steels. In order to link to the FEH analysis, the microstructure in the steel is described by the representative volume element (RVE) based on the results of the PF simulation. The results reveal that although the macroscopic stress–strain relationship is mainly characterized by the volume fraction of the constituent phase, the localization of plastic strain is reduced due to the fine-grained α phase. This numerical model provides a systematic way of predicting the mechanical properties of steel depending on the microstructure.
doi_str_mv 10.1016/j.msea.2007.08.066
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32791122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509307016097</els_id><sourcerecordid>32791122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-f65f28304f2107598c197e704e0f33b3ccbd887dedb66d9c1a7decfdc6161e1b3</originalsourceid><addsrcrecordid>eNp9UU1u1TAQthCVeBQuwMob2CWMncROJDboiVKkSmxgbTn2mOcnJw52UqmsuAOckJM0aSrYsZoZfT-jmY-QVwxKBky8PZdDRl1yAFlCW4IQT8iBtbIq6q4ST8kBOs6KBrrqGXme8xkAWA3Ngfw-xmUKaGn2wxL07ONIo6ODNynmOS1mXpIO1MU07KAeLbX4b-7xpG99TJvKYUp-xj8_f02oU1hbmmfEQPs7Op10xsJ5DJYOOJ-ifbA6xSF-w9H_2N125AW5cDpkfPlYL8nXqw9fjtfFzeePn47vbwpTczkXTjSOtxXUjjOQTdca1kmUUCO4quorY3rbttKi7YWwnWF67Y2zRjDBkPXVJXmz-04pfl8wz2rw2WAIesS4ZFVx2THG-UrkO3H7Sk7o1JT8oNOdYqC2ANRZbQGoLQAFrVoDWEWvH911Njq4pEfj818lB153smEr793Ow_XUW49JZeNxNGh9QjMrG_3_1twDaKiiDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32791122</pqid></control><display><type>article</type><title>Coupled simulation of microstructural formation and deformation behavior of ferrite–pearlite steel by phase-field method and homogenization method</title><source>Elsevier ScienceDirect Journals</source><creator>Yamanaka, A. ; Takaki, T. ; Tomita, Y.</creator><creatorcontrib>Yamanaka, A. ; Takaki, T. ; Tomita, Y.</creatorcontrib><description>A coupled simulation by the phase-field (PF) method and the finite element method based on the homogenization theory (FEH) is developed to predict the microstructure formations and mechanical properties of ferrite–pearlite steels. The formation of the α phase during the isothermal γ → α transformation is simulated by the PF method. Furthermore, the FEH analysis is performed to clarify the effects of the predicted microstructure on the deformation behavior of the steels. In order to link to the FEH analysis, the microstructure in the steel is described by the representative volume element (RVE) based on the results of the PF simulation. The results reveal that although the macroscopic stress–strain relationship is mainly characterized by the volume fraction of the constituent phase, the localization of plastic strain is reduced due to the fine-grained α phase. This numerical model provides a systematic way of predicting the mechanical properties of steel depending on the microstructure.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2007.08.066</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; FEM ; Ferrite–pearlite steel ; Homogenization method ; Materials science ; Mechanical properties ; Microstructure ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Phase-field method ; Physics</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2008-05, Vol.480 (1), p.244-252</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-f65f28304f2107598c197e704e0f33b3ccbd887dedb66d9c1a7decfdc6161e1b3</citedby><cites>FETCH-LOGICAL-c427t-f65f28304f2107598c197e704e0f33b3ccbd887dedb66d9c1a7decfdc6161e1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509307016097$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20249751$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamanaka, A.</creatorcontrib><creatorcontrib>Takaki, T.</creatorcontrib><creatorcontrib>Tomita, Y.</creatorcontrib><title>Coupled simulation of microstructural formation and deformation behavior of ferrite–pearlite steel by phase-field method and homogenization method</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>A coupled simulation by the phase-field (PF) method and the finite element method based on the homogenization theory (FEH) is developed to predict the microstructure formations and mechanical properties of ferrite–pearlite steels. The formation of the α phase during the isothermal γ → α transformation is simulated by the PF method. Furthermore, the FEH analysis is performed to clarify the effects of the predicted microstructure on the deformation behavior of the steels. In order to link to the FEH analysis, the microstructure in the steel is described by the representative volume element (RVE) based on the results of the PF simulation. The results reveal that although the macroscopic stress–strain relationship is mainly characterized by the volume fraction of the constituent phase, the localization of plastic strain is reduced due to the fine-grained α phase. This numerical model provides a systematic way of predicting the mechanical properties of steel depending on the microstructure.</description><subject>Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>FEM</subject><subject>Ferrite–pearlite steel</subject><subject>Homogenization method</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Phase-field method</subject><subject>Physics</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9UU1u1TAQthCVeBQuwMob2CWMncROJDboiVKkSmxgbTn2mOcnJw52UqmsuAOckJM0aSrYsZoZfT-jmY-QVwxKBky8PZdDRl1yAFlCW4IQT8iBtbIq6q4ST8kBOs6KBrrqGXme8xkAWA3Ngfw-xmUKaGn2wxL07ONIo6ODNynmOS1mXpIO1MU07KAeLbX4b-7xpG99TJvKYUp-xj8_f02oU1hbmmfEQPs7Op10xsJ5DJYOOJ-ifbA6xSF-w9H_2N125AW5cDpkfPlYL8nXqw9fjtfFzeePn47vbwpTczkXTjSOtxXUjjOQTdca1kmUUCO4quorY3rbttKi7YWwnWF67Y2zRjDBkPXVJXmz-04pfl8wz2rw2WAIesS4ZFVx2THG-UrkO3H7Sk7o1JT8oNOdYqC2ANRZbQGoLQAFrVoDWEWvH911Njq4pEfj818lB153smEr793Ow_XUW49JZeNxNGh9QjMrG_3_1twDaKiiDA</recordid><startdate>20080515</startdate><enddate>20080515</enddate><creator>Yamanaka, A.</creator><creator>Takaki, T.</creator><creator>Tomita, Y.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080515</creationdate><title>Coupled simulation of microstructural formation and deformation behavior of ferrite–pearlite steel by phase-field method and homogenization method</title><author>Yamanaka, A. ; Takaki, T. ; Tomita, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-f65f28304f2107598c197e704e0f33b3ccbd887dedb66d9c1a7decfdc6161e1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>FEM</topic><topic>Ferrite–pearlite steel</topic><topic>Homogenization method</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Phase-field method</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamanaka, A.</creatorcontrib><creatorcontrib>Takaki, T.</creatorcontrib><creatorcontrib>Tomita, Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamanaka, A.</au><au>Takaki, T.</au><au>Tomita, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled simulation of microstructural formation and deformation behavior of ferrite–pearlite steel by phase-field method and homogenization method</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2008-05-15</date><risdate>2008</risdate><volume>480</volume><issue>1</issue><spage>244</spage><epage>252</epage><pages>244-252</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>A coupled simulation by the phase-field (PF) method and the finite element method based on the homogenization theory (FEH) is developed to predict the microstructure formations and mechanical properties of ferrite–pearlite steels. The formation of the α phase during the isothermal γ → α transformation is simulated by the PF method. Furthermore, the FEH analysis is performed to clarify the effects of the predicted microstructure on the deformation behavior of the steels. In order to link to the FEH analysis, the microstructure in the steel is described by the representative volume element (RVE) based on the results of the PF simulation. The results reveal that although the macroscopic stress–strain relationship is mainly characterized by the volume fraction of the constituent phase, the localization of plastic strain is reduced due to the fine-grained α phase. This numerical model provides a systematic way of predicting the mechanical properties of steel depending on the microstructure.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2007.08.066</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2008-05, Vol.480 (1), p.244-252
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_32791122
source Elsevier ScienceDirect Journals
subjects Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
FEM
Ferrite–pearlite steel
Homogenization method
Materials science
Mechanical properties
Microstructure
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Phase-field method
Physics
title Coupled simulation of microstructural formation and deformation behavior of ferrite–pearlite steel by phase-field method and homogenization method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20simulation%20of%20microstructural%20formation%20and%20deformation%20behavior%20of%20ferrite%E2%80%93pearlite%20steel%20by%20phase-field%20method%20and%20homogenization%20method&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Yamanaka,%20A.&rft.date=2008-05-15&rft.volume=480&rft.issue=1&rft.spage=244&rft.epage=252&rft.pages=244-252&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2007.08.066&rft_dat=%3Cproquest_cross%3E32791122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32791122&rft_id=info:pmid/&rft_els_id=S0921509307016097&rfr_iscdi=true