Continuum model for the simulation of fiber spinning, with quiescent and flow-induced crystallization

A macroscopic model for the description of low- and high-speed fiber spinning of crystallizing polymers is proposed. The model incorporates air drag, air cooling, gravity, surface tension and the viscoelastic rheological behavior of the melt. The crystallization dynamics are formulated through a set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-Newtonian fluid mechanics 2008-04, Vol.150 (2), p.177-195
Hauptverfasser: van Meerveld, Jan, Hütter, Markus, Peters, Gerrit W.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue 2
container_start_page 177
container_title Journal of non-Newtonian fluid mechanics
container_volume 150
creator van Meerveld, Jan
Hütter, Markus
Peters, Gerrit W.M.
description A macroscopic model for the description of low- and high-speed fiber spinning of crystallizing polymers is proposed. The model incorporates air drag, air cooling, gravity, surface tension and the viscoelastic rheological behavior of the melt. The crystallization dynamics are formulated through a set of rate equations, which describe the quiescent nucleation and growth of spherulites, as well as the flow-induced nucleation and longitudinal growth of fibrils. The influence of the crystallization, as well as the glass transition, on the rheological response is accounted for through a viscous stress contribution. The proposed model realistically describes the velocity, temperature, stress, apparent viscosity and crystallinity profile along the spinline under different processing conditions. Moreover, using a single set of model parameters a fair description of the experimental velocity and temperature profiles is obtained for both low- and high-speed spinning conditions of nylon 66. For poly(ethylene terephthalate) the model describes high-speed spinning conditions only.
doi_str_mv 10.1016/j.jnnfm.2007.10.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32780263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377025707002340</els_id><sourcerecordid>32780263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-ba2969d0c40f96a009f906eab6494f97d7282538dd32905e225c5871fd246aee3</originalsourceid><addsrcrecordid>eNp9kDFvFDEQhS0EEkfIL6BxAxV7zNq73nVBgU4kIEWiIbXls8fEJ699sb1E4dfjy0WUTDPS6L03Mx8h73rY9tCLT4ftIUa3bBnA1CZbYPCCbPp54h0TvH9JNsCnqQM2Tq_Jm1IO0GrkYkNwl2L1cV0XuiSLgbqUab1DWvyyBl19ijQ56vweMy1HH6OPvz7SB1_v6P3qsRiMlepoqQvpofPRrgYtNfmxVB2C__MU8Za8cjoUvHzuF-T26uvP3bfu5sf1992Xm85wMdRur5kU0oIZwEmhAaSTIFDvxSAHJyc7sZmNfLaWMwkjMjaacZ56Z9kgNCK_IB_Oucec7lcsVS2-XRiCjpjWojibZmhEmpCfhSanUjI6dcx-0flR9aBOSNVBPSFVJ6SnYUPaXO-f43UxOriso_Hln5U1vsClaLrPZx22X397zKoYj7GB8RlNVTb5_-75C9dgjr0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32780263</pqid></control><display><type>article</type><title>Continuum model for the simulation of fiber spinning, with quiescent and flow-induced crystallization</title><source>Access via ScienceDirect (Elsevier)</source><creator>van Meerveld, Jan ; Hütter, Markus ; Peters, Gerrit W.M.</creator><creatorcontrib>van Meerveld, Jan ; Hütter, Markus ; Peters, Gerrit W.M.</creatorcontrib><description>A macroscopic model for the description of low- and high-speed fiber spinning of crystallizing polymers is proposed. The model incorporates air drag, air cooling, gravity, surface tension and the viscoelastic rheological behavior of the melt. The crystallization dynamics are formulated through a set of rate equations, which describe the quiescent nucleation and growth of spherulites, as well as the flow-induced nucleation and longitudinal growth of fibrils. The influence of the crystallization, as well as the glass transition, on the rheological response is accounted for through a viscous stress contribution. The proposed model realistically describes the velocity, temperature, stress, apparent viscosity and crystallinity profile along the spinline under different processing conditions. Moreover, using a single set of model parameters a fair description of the experimental velocity and temperature profiles is obtained for both low- and high-speed spinning conditions of nylon 66. For poly(ethylene terephthalate) the model describes high-speed spinning conditions only.</description><identifier>ISSN: 0377-0257</identifier><identifier>EISSN: 1873-2631</identifier><identifier>DOI: 10.1016/j.jnnfm.2007.10.020</identifier><identifier>CODEN: JNFMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Crystal morphology ; Exact sciences and technology ; Fiber spinning ; Fibers and threads ; Flow-induced crystallization of polymer melts ; Forms of application and semi-finished materials ; Nylon 66 ; Poly(ethylene terephthalate) ; Polymer industry, paints, wood ; Separation of crystal nucleation and growth ; Technology of polymers</subject><ispartof>Journal of non-Newtonian fluid mechanics, 2008-04, Vol.150 (2), p.177-195</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-ba2969d0c40f96a009f906eab6494f97d7282538dd32905e225c5871fd246aee3</citedby><cites>FETCH-LOGICAL-c364t-ba2969d0c40f96a009f906eab6494f97d7282538dd32905e225c5871fd246aee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnnfm.2007.10.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20250396$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>van Meerveld, Jan</creatorcontrib><creatorcontrib>Hütter, Markus</creatorcontrib><creatorcontrib>Peters, Gerrit W.M.</creatorcontrib><title>Continuum model for the simulation of fiber spinning, with quiescent and flow-induced crystallization</title><title>Journal of non-Newtonian fluid mechanics</title><description>A macroscopic model for the description of low- and high-speed fiber spinning of crystallizing polymers is proposed. The model incorporates air drag, air cooling, gravity, surface tension and the viscoelastic rheological behavior of the melt. The crystallization dynamics are formulated through a set of rate equations, which describe the quiescent nucleation and growth of spherulites, as well as the flow-induced nucleation and longitudinal growth of fibrils. The influence of the crystallization, as well as the glass transition, on the rheological response is accounted for through a viscous stress contribution. The proposed model realistically describes the velocity, temperature, stress, apparent viscosity and crystallinity profile along the spinline under different processing conditions. Moreover, using a single set of model parameters a fair description of the experimental velocity and temperature profiles is obtained for both low- and high-speed spinning conditions of nylon 66. For poly(ethylene terephthalate) the model describes high-speed spinning conditions only.</description><subject>Applied sciences</subject><subject>Crystal morphology</subject><subject>Exact sciences and technology</subject><subject>Fiber spinning</subject><subject>Fibers and threads</subject><subject>Flow-induced crystallization of polymer melts</subject><subject>Forms of application and semi-finished materials</subject><subject>Nylon 66</subject><subject>Poly(ethylene terephthalate)</subject><subject>Polymer industry, paints, wood</subject><subject>Separation of crystal nucleation and growth</subject><subject>Technology of polymers</subject><issn>0377-0257</issn><issn>1873-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kDFvFDEQhS0EEkfIL6BxAxV7zNq73nVBgU4kIEWiIbXls8fEJ699sb1E4dfjy0WUTDPS6L03Mx8h73rY9tCLT4ftIUa3bBnA1CZbYPCCbPp54h0TvH9JNsCnqQM2Tq_Jm1IO0GrkYkNwl2L1cV0XuiSLgbqUab1DWvyyBl19ijQ56vweMy1HH6OPvz7SB1_v6P3qsRiMlepoqQvpofPRrgYtNfmxVB2C__MU8Za8cjoUvHzuF-T26uvP3bfu5sf1992Xm85wMdRur5kU0oIZwEmhAaSTIFDvxSAHJyc7sZmNfLaWMwkjMjaacZ56Z9kgNCK_IB_Oucec7lcsVS2-XRiCjpjWojibZmhEmpCfhSanUjI6dcx-0flR9aBOSNVBPSFVJ6SnYUPaXO-f43UxOriso_Hln5U1vsClaLrPZx22X397zKoYj7GB8RlNVTb5_-75C9dgjr0</recordid><startdate>20080414</startdate><enddate>20080414</enddate><creator>van Meerveld, Jan</creator><creator>Hütter, Markus</creator><creator>Peters, Gerrit W.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20080414</creationdate><title>Continuum model for the simulation of fiber spinning, with quiescent and flow-induced crystallization</title><author>van Meerveld, Jan ; Hütter, Markus ; Peters, Gerrit W.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-ba2969d0c40f96a009f906eab6494f97d7282538dd32905e225c5871fd246aee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Crystal morphology</topic><topic>Exact sciences and technology</topic><topic>Fiber spinning</topic><topic>Fibers and threads</topic><topic>Flow-induced crystallization of polymer melts</topic><topic>Forms of application and semi-finished materials</topic><topic>Nylon 66</topic><topic>Poly(ethylene terephthalate)</topic><topic>Polymer industry, paints, wood</topic><topic>Separation of crystal nucleation and growth</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Meerveld, Jan</creatorcontrib><creatorcontrib>Hütter, Markus</creatorcontrib><creatorcontrib>Peters, Gerrit W.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-Newtonian fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Meerveld, Jan</au><au>Hütter, Markus</au><au>Peters, Gerrit W.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuum model for the simulation of fiber spinning, with quiescent and flow-induced crystallization</atitle><jtitle>Journal of non-Newtonian fluid mechanics</jtitle><date>2008-04-14</date><risdate>2008</risdate><volume>150</volume><issue>2</issue><spage>177</spage><epage>195</epage><pages>177-195</pages><issn>0377-0257</issn><eissn>1873-2631</eissn><coden>JNFMDI</coden><abstract>A macroscopic model for the description of low- and high-speed fiber spinning of crystallizing polymers is proposed. The model incorporates air drag, air cooling, gravity, surface tension and the viscoelastic rheological behavior of the melt. The crystallization dynamics are formulated through a set of rate equations, which describe the quiescent nucleation and growth of spherulites, as well as the flow-induced nucleation and longitudinal growth of fibrils. The influence of the crystallization, as well as the glass transition, on the rheological response is accounted for through a viscous stress contribution. The proposed model realistically describes the velocity, temperature, stress, apparent viscosity and crystallinity profile along the spinline under different processing conditions. Moreover, using a single set of model parameters a fair description of the experimental velocity and temperature profiles is obtained for both low- and high-speed spinning conditions of nylon 66. For poly(ethylene terephthalate) the model describes high-speed spinning conditions only.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnnfm.2007.10.020</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-0257
ispartof Journal of non-Newtonian fluid mechanics, 2008-04, Vol.150 (2), p.177-195
issn 0377-0257
1873-2631
language eng
recordid cdi_proquest_miscellaneous_32780263
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Crystal morphology
Exact sciences and technology
Fiber spinning
Fibers and threads
Flow-induced crystallization of polymer melts
Forms of application and semi-finished materials
Nylon 66
Poly(ethylene terephthalate)
Polymer industry, paints, wood
Separation of crystal nucleation and growth
Technology of polymers
title Continuum model for the simulation of fiber spinning, with quiescent and flow-induced crystallization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuum%20model%20for%20the%20simulation%20of%20fiber%20spinning,%20with%20quiescent%20and%20flow-induced%20crystallization&rft.jtitle=Journal%20of%20non-Newtonian%20fluid%20mechanics&rft.au=van%20Meerveld,%20Jan&rft.date=2008-04-14&rft.volume=150&rft.issue=2&rft.spage=177&rft.epage=195&rft.pages=177-195&rft.issn=0377-0257&rft.eissn=1873-2631&rft.coden=JNFMDI&rft_id=info:doi/10.1016/j.jnnfm.2007.10.020&rft_dat=%3Cproquest_cross%3E32780263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32780263&rft_id=info:pmid/&rft_els_id=S0377025707002340&rfr_iscdi=true