CFD simulation of gas–liquid flows in stirred vessel equipped with dual rushton turbines: influence of parallel, merging and diverging flow configurations

Computational fluid dynamics (CFD) was used to investigate the influence of parallel, merging and diverging flow configurations on the gas dispersion operation in stirred vessel. The simulation was based on the two-fluid model along with the standard k– ε turbulence model along with an appropriate d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2008-07, Vol.63 (14), p.3810-3820
Hauptverfasser: Khopkar, Avinash R., Tanguy, Philippe A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3820
container_issue 14
container_start_page 3810
container_title Chemical engineering science
container_volume 63
creator Khopkar, Avinash R.
Tanguy, Philippe A.
description Computational fluid dynamics (CFD) was used to investigate the influence of parallel, merging and diverging flow configurations on the gas dispersion operation in stirred vessel. The simulation was based on the two-fluid model along with the standard k– ε turbulence model along with an appropriate drag correction to account for bulk turbulence [Khopkar, A.R., Ranade, V.V., 2006. CFD simulation of gas–liquid stirred vessel: VC, S33 and L33 flow regimes. A.I.Ch.E. Journal 52, 1654–1671]. The model predictions were compared with the published experimental data of Bombac, Zun [2000. Gas-filled cavity structures and local void fraction distribution in vessel with dual-impellers. Chemical Engineering Science 55, 2995–3001] for parallel flow configuration. The predicted results show reasonably good agreement with the experimental data. The computational model was then used to simulate the gas–liquid flows for the other two flow configurations. The results of this work provide ‘a priory’ information on the implications of flow configuration on the vessel performance.
doi_str_mv 10.1016/j.ces.2008.04.039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32775307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250908002352</els_id><sourcerecordid>32775307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-10d94f9e060c2b81616474f194b0a78c5d7c1d736f53cff09f4db267951e16f93</originalsourceid><addsrcrecordid>eNp9UcuO1DAQjBBIDAsfwM0XOJHQzssxnNDAAtJKXOBseez2rEceJ-tOZsWNf-DK1_ElOMyII6dWqauqH1UUzzlUHHj_-lAZpKoGGCpoK2jkg2LDB9GUbQvdw2IDALKsO5CPiydEhwyF4LApfm2v3zPyxyXo2Y-RjY7tNf3-8TP4u8Vb5sJ4T8xHRrNPCS07IREGhrk7TRnf-_mW2UUHlha6nbPFvKSdj0hvssyFBaPB1XbSSYeA4RU7Ytr7uGc6Wmb96YLWScyM0fn9kv4uQ0-LR04HwmeXelV8u_7wdfupvPny8fP23U1pGtnNJQcrWycRejD1buA971vROi7bHWgxmM4Kw61oetc1xjmQrrW7uhey48h7J5ur4uXZd0rj3YI0q6MngyHoiONCqqmF6BoQmcjPRJNGooROTckfdfquOKg1B3VQOQe15qCgVTmHrHlxMddkdHBJR-Ppn7CGru6aoc68t2ce5ktPHpMi49fnWZ_QzMqO_j9T_gCQYKGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32775307</pqid></control><display><type>article</type><title>CFD simulation of gas–liquid flows in stirred vessel equipped with dual rushton turbines: influence of parallel, merging and diverging flow configurations</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Khopkar, Avinash R. ; Tanguy, Philippe A.</creator><creatorcontrib>Khopkar, Avinash R. ; Tanguy, Philippe A.</creatorcontrib><description>Computational fluid dynamics (CFD) was used to investigate the influence of parallel, merging and diverging flow configurations on the gas dispersion operation in stirred vessel. The simulation was based on the two-fluid model along with the standard k– ε turbulence model along with an appropriate drag correction to account for bulk turbulence [Khopkar, A.R., Ranade, V.V., 2006. CFD simulation of gas–liquid stirred vessel: VC, S33 and L33 flow regimes. A.I.Ch.E. Journal 52, 1654–1671]. The model predictions were compared with the published experimental data of Bombac, Zun [2000. Gas-filled cavity structures and local void fraction distribution in vessel with dual-impellers. Chemical Engineering Science 55, 2995–3001] for parallel flow configuration. The predicted results show reasonably good agreement with the experimental data. The computational model was then used to simulate the gas–liquid flows for the other two flow configurations. The results of this work provide ‘a priory’ information on the implications of flow configuration on the vessel performance.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2008.04.039</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; CFD ; Chemical engineering ; Dual impeller ; Exact sciences and technology ; Flow configurations ; Gas holdup distribution ; Hydrodynamics of contact apparatus ; Mixing ; Stirred vessel</subject><ispartof>Chemical engineering science, 2008-07, Vol.63 (14), p.3810-3820</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-10d94f9e060c2b81616474f194b0a78c5d7c1d736f53cff09f4db267951e16f93</citedby><cites>FETCH-LOGICAL-c395t-10d94f9e060c2b81616474f194b0a78c5d7c1d736f53cff09f4db267951e16f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0009250908002352$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20525382$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Khopkar, Avinash R.</creatorcontrib><creatorcontrib>Tanguy, Philippe A.</creatorcontrib><title>CFD simulation of gas–liquid flows in stirred vessel equipped with dual rushton turbines: influence of parallel, merging and diverging flow configurations</title><title>Chemical engineering science</title><description>Computational fluid dynamics (CFD) was used to investigate the influence of parallel, merging and diverging flow configurations on the gas dispersion operation in stirred vessel. The simulation was based on the two-fluid model along with the standard k– ε turbulence model along with an appropriate drag correction to account for bulk turbulence [Khopkar, A.R., Ranade, V.V., 2006. CFD simulation of gas–liquid stirred vessel: VC, S33 and L33 flow regimes. A.I.Ch.E. Journal 52, 1654–1671]. The model predictions were compared with the published experimental data of Bombac, Zun [2000. Gas-filled cavity structures and local void fraction distribution in vessel with dual-impellers. Chemical Engineering Science 55, 2995–3001] for parallel flow configuration. The predicted results show reasonably good agreement with the experimental data. The computational model was then used to simulate the gas–liquid flows for the other two flow configurations. The results of this work provide ‘a priory’ information on the implications of flow configuration on the vessel performance.</description><subject>Applied sciences</subject><subject>CFD</subject><subject>Chemical engineering</subject><subject>Dual impeller</subject><subject>Exact sciences and technology</subject><subject>Flow configurations</subject><subject>Gas holdup distribution</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Mixing</subject><subject>Stirred vessel</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9UcuO1DAQjBBIDAsfwM0XOJHQzssxnNDAAtJKXOBseez2rEceJ-tOZsWNf-DK1_ElOMyII6dWqauqH1UUzzlUHHj_-lAZpKoGGCpoK2jkg2LDB9GUbQvdw2IDALKsO5CPiydEhwyF4LApfm2v3zPyxyXo2Y-RjY7tNf3-8TP4u8Vb5sJ4T8xHRrNPCS07IREGhrk7TRnf-_mW2UUHlha6nbPFvKSdj0hvssyFBaPB1XbSSYeA4RU7Ytr7uGc6Wmb96YLWScyM0fn9kv4uQ0-LR04HwmeXelV8u_7wdfupvPny8fP23U1pGtnNJQcrWycRejD1buA971vROi7bHWgxmM4Kw61oetc1xjmQrrW7uhey48h7J5ur4uXZd0rj3YI0q6MngyHoiONCqqmF6BoQmcjPRJNGooROTckfdfquOKg1B3VQOQe15qCgVTmHrHlxMddkdHBJR-Ppn7CGru6aoc68t2ce5ktPHpMi49fnWZ_QzMqO_j9T_gCQYKGw</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Khopkar, Avinash R.</creator><creator>Tanguy, Philippe A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>200807</creationdate><title>CFD simulation of gas–liquid flows in stirred vessel equipped with dual rushton turbines: influence of parallel, merging and diverging flow configurations</title><author>Khopkar, Avinash R. ; Tanguy, Philippe A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-10d94f9e060c2b81616474f194b0a78c5d7c1d736f53cff09f4db267951e16f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>CFD</topic><topic>Chemical engineering</topic><topic>Dual impeller</topic><topic>Exact sciences and technology</topic><topic>Flow configurations</topic><topic>Gas holdup distribution</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Mixing</topic><topic>Stirred vessel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khopkar, Avinash R.</creatorcontrib><creatorcontrib>Tanguy, Philippe A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khopkar, Avinash R.</au><au>Tanguy, Philippe A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD simulation of gas–liquid flows in stirred vessel equipped with dual rushton turbines: influence of parallel, merging and diverging flow configurations</atitle><jtitle>Chemical engineering science</jtitle><date>2008-07</date><risdate>2008</risdate><volume>63</volume><issue>14</issue><spage>3810</spage><epage>3820</epage><pages>3810-3820</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>Computational fluid dynamics (CFD) was used to investigate the influence of parallel, merging and diverging flow configurations on the gas dispersion operation in stirred vessel. The simulation was based on the two-fluid model along with the standard k– ε turbulence model along with an appropriate drag correction to account for bulk turbulence [Khopkar, A.R., Ranade, V.V., 2006. CFD simulation of gas–liquid stirred vessel: VC, S33 and L33 flow regimes. A.I.Ch.E. Journal 52, 1654–1671]. The model predictions were compared with the published experimental data of Bombac, Zun [2000. Gas-filled cavity structures and local void fraction distribution in vessel with dual-impellers. Chemical Engineering Science 55, 2995–3001] for parallel flow configuration. The predicted results show reasonably good agreement with the experimental data. The computational model was then used to simulate the gas–liquid flows for the other two flow configurations. The results of this work provide ‘a priory’ information on the implications of flow configuration on the vessel performance.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2008.04.039</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2008-07, Vol.63 (14), p.3810-3820
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_32775307
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
CFD
Chemical engineering
Dual impeller
Exact sciences and technology
Flow configurations
Gas holdup distribution
Hydrodynamics of contact apparatus
Mixing
Stirred vessel
title CFD simulation of gas–liquid flows in stirred vessel equipped with dual rushton turbines: influence of parallel, merging and diverging flow configurations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20simulation%20of%20gas%E2%80%93liquid%20flows%20in%20stirred%20vessel%20equipped%20with%20dual%20rushton%20turbines:%20influence%20of%20parallel,%20merging%20and%20diverging%20flow%20configurations&rft.jtitle=Chemical%20engineering%20science&rft.au=Khopkar,%20Avinash%20R.&rft.date=2008-07&rft.volume=63&rft.issue=14&rft.spage=3810&rft.epage=3820&rft.pages=3810-3820&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2008.04.039&rft_dat=%3Cproquest_cross%3E32775307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32775307&rft_id=info:pmid/&rft_els_id=S0009250908002352&rfr_iscdi=true