Viscous effects on wave generation by strong winds
This paper deals with the stability of water waves in a shear flow. Both temporal and spatial growth rates are derived. A carefully designed numerical solver enables us to extend the range of previous calculations, and to obtain results for larger wavelengths (up to 20 cm) and stronger winds (up to...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2008-02, Vol.597, p.343-369 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 369 |
---|---|
container_issue | |
container_start_page | 343 |
container_title | Journal of fluid mechanics |
container_volume | 597 |
creator | ZEISEL, A. STIASSNIE, M. AGNON, Y. |
description | This paper deals with the stability of water waves in a shear flow. Both temporal and spatial growth rates are derived. A carefully designed numerical solver enables us to extend the range of previous calculations, and to obtain results for larger wavelengths (up to 20 cm) and stronger winds (up to a friction-velocity of 1 m s−1). The main finding is the appearance of a second unstable mode which often turns out to be the dominant one. A comparison between results from the viscous model (Orr–Sommerfeld equations) and those of the inviscid model (Rayleigh equations), for 18 cm long waves, reveals some similarity in the structure of the eigenfunctions, but a significant difference in the imaginary part of the eigenvalues (i.e. the growth rate). It is found that the growth rate for the viscous model is 10 fold larger than that of the inviscid one. |
doi_str_mv | 10.1017/S0022112007009858 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32741901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112007009858</cupid><sourcerecordid>1496181121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-114884c7911094b9dfc1534af698600f2aa8c6df47843eb3fe4e8d8f8538e7a53</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWKs_wLdF0LfV3DaXRym2CkVRa30M2WxStra7Ndla--_N0lJBEZ-G4Xwzc-YAcIrgJYKIXz1DiDFCGEIOoRSZ2AMdRJlMOaPZPui0ctrqh-AohCmEiEDJOwCPy2DqZUisc9Y0IamrZKU_bDKxlfW6KWOfr5PQ-LqaJKuyKsIxOHB6FuzJtnbBS_9m1LtNhw-Du971MDWUsiYeo0JQwyVCUNJcFs6gjFDtmBQMQoe1FoYVjnJBic2Js9SKQjiREWG5zkgXXGz2Lnz9vrShUfPo1c5murLRsSKYUyTjI_-BOCZEBcMRPPsBTuulr-ITLSNjKJRECG0g4-sQvHVq4cu59muFoGqzVr-yjjPn28U6GD1zXlemDLtBDBHOBKeRSzdcGRr7udO1f1OME54pNnhUr_ej_vipR5SMPNl60fPcl8XEfjv-280X52KZ2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210900143</pqid></control><display><type>article</type><title>Viscous effects on wave generation by strong winds</title><source>Cambridge University Press Journals Complete</source><creator>ZEISEL, A. ; STIASSNIE, M. ; AGNON, Y.</creator><creatorcontrib>ZEISEL, A. ; STIASSNIE, M. ; AGNON, Y.</creatorcontrib><description>This paper deals with the stability of water waves in a shear flow. Both temporal and spatial growth rates are derived. A carefully designed numerical solver enables us to extend the range of previous calculations, and to obtain results for larger wavelengths (up to 20 cm) and stronger winds (up to a friction-velocity of 1 m s−1). The main finding is the appearance of a second unstable mode which often turns out to be the dominant one. A comparison between results from the viscous model (Orr–Sommerfeld equations) and those of the inviscid model (Rayleigh equations), for 18 cm long waves, reveals some similarity in the structure of the eigenfunctions, but a significant difference in the imaginary part of the eigenvalues (i.e. the growth rate). It is found that the growth rate for the viscous model is 10 fold larger than that of the inviscid one.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112007009858</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fluid mechanics ; Physics of the oceans ; Surface waves, tides and sea level. Seiches ; Water ; Water waves ; Wavelengths ; Wind</subject><ispartof>Journal of fluid mechanics, 2008-02, Vol.597, p.343-369</ispartof><rights>Copyright © Cambridge University Press 2008</rights><rights>2008 INIST-CNRS</rights><rights>Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-114884c7911094b9dfc1534af698600f2aa8c6df47843eb3fe4e8d8f8538e7a53</citedby><cites>FETCH-LOGICAL-c446t-114884c7911094b9dfc1534af698600f2aa8c6df47843eb3fe4e8d8f8538e7a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112007009858/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20125874$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ZEISEL, A.</creatorcontrib><creatorcontrib>STIASSNIE, M.</creatorcontrib><creatorcontrib>AGNON, Y.</creatorcontrib><title>Viscous effects on wave generation by strong winds</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>This paper deals with the stability of water waves in a shear flow. Both temporal and spatial growth rates are derived. A carefully designed numerical solver enables us to extend the range of previous calculations, and to obtain results for larger wavelengths (up to 20 cm) and stronger winds (up to a friction-velocity of 1 m s−1). The main finding is the appearance of a second unstable mode which often turns out to be the dominant one. A comparison between results from the viscous model (Orr–Sommerfeld equations) and those of the inviscid model (Rayleigh equations), for 18 cm long waves, reveals some similarity in the structure of the eigenfunctions, but a significant difference in the imaginary part of the eigenvalues (i.e. the growth rate). It is found that the growth rate for the viscous model is 10 fold larger than that of the inviscid one.</description><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluid mechanics</subject><subject>Physics of the oceans</subject><subject>Surface waves, tides and sea level. Seiches</subject><subject>Water</subject><subject>Water waves</subject><subject>Wavelengths</subject><subject>Wind</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkFtLAzEQhYMoWKs_wLdF0LfV3DaXRym2CkVRa30M2WxStra7Ndla--_N0lJBEZ-G4Xwzc-YAcIrgJYKIXz1DiDFCGEIOoRSZ2AMdRJlMOaPZPui0ctrqh-AohCmEiEDJOwCPy2DqZUisc9Y0IamrZKU_bDKxlfW6KWOfr5PQ-LqaJKuyKsIxOHB6FuzJtnbBS_9m1LtNhw-Du971MDWUsiYeo0JQwyVCUNJcFs6gjFDtmBQMQoe1FoYVjnJBic2Js9SKQjiREWG5zkgXXGz2Lnz9vrShUfPo1c5murLRsSKYUyTjI_-BOCZEBcMRPPsBTuulr-ITLSNjKJRECG0g4-sQvHVq4cu59muFoGqzVr-yjjPn28U6GD1zXlemDLtBDBHOBKeRSzdcGRr7udO1f1OME54pNnhUr_ej_vipR5SMPNl60fPcl8XEfjv-280X52KZ2g</recordid><startdate>20080225</startdate><enddate>20080225</enddate><creator>ZEISEL, A.</creator><creator>STIASSNIE, M.</creator><creator>AGNON, Y.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20080225</creationdate><title>Viscous effects on wave generation by strong winds</title><author>ZEISEL, A. ; STIASSNIE, M. ; AGNON, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-114884c7911094b9dfc1534af698600f2aa8c6df47843eb3fe4e8d8f8538e7a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluid mechanics</topic><topic>Physics of the oceans</topic><topic>Surface waves, tides and sea level. Seiches</topic><topic>Water</topic><topic>Water waves</topic><topic>Wavelengths</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZEISEL, A.</creatorcontrib><creatorcontrib>STIASSNIE, M.</creatorcontrib><creatorcontrib>AGNON, Y.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZEISEL, A.</au><au>STIASSNIE, M.</au><au>AGNON, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscous effects on wave generation by strong winds</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2008-02-25</date><risdate>2008</risdate><volume>597</volume><spage>343</spage><epage>369</epage><pages>343-369</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>This paper deals with the stability of water waves in a shear flow. Both temporal and spatial growth rates are derived. A carefully designed numerical solver enables us to extend the range of previous calculations, and to obtain results for larger wavelengths (up to 20 cm) and stronger winds (up to a friction-velocity of 1 m s−1). The main finding is the appearance of a second unstable mode which often turns out to be the dominant one. A comparison between results from the viscous model (Orr–Sommerfeld equations) and those of the inviscid model (Rayleigh equations), for 18 cm long waves, reveals some similarity in the structure of the eigenfunctions, but a significant difference in the imaginary part of the eigenvalues (i.e. the growth rate). It is found that the growth rate for the viscous model is 10 fold larger than that of the inviscid one.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112007009858</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2008-02, Vol.597, p.343-369 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_32741901 |
source | Cambridge University Press Journals Complete |
subjects | Earth, ocean, space Exact sciences and technology External geophysics Fluid mechanics Physics of the oceans Surface waves, tides and sea level. Seiches Water Water waves Wavelengths Wind |
title | Viscous effects on wave generation by strong winds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscous%20effects%20on%20wave%20generation%20by%20strong%20winds&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=ZEISEL,%20A.&rft.date=2008-02-25&rft.volume=597&rft.spage=343&rft.epage=369&rft.pages=343-369&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112007009858&rft_dat=%3Cproquest_cross%3E1496181121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210900143&rft_id=info:pmid/&rft_cupid=10_1017_S0022112007009858&rfr_iscdi=true |