Viscous effects on wave generation by strong winds

This paper deals with the stability of water waves in a shear flow. Both temporal and spatial growth rates are derived. A carefully designed numerical solver enables us to extend the range of previous calculations, and to obtain results for larger wavelengths (up to 20 cm) and stronger winds (up to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2008-02, Vol.597, p.343-369
Hauptverfasser: ZEISEL, A., STIASSNIE, M., AGNON, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 369
container_issue
container_start_page 343
container_title Journal of fluid mechanics
container_volume 597
creator ZEISEL, A.
STIASSNIE, M.
AGNON, Y.
description This paper deals with the stability of water waves in a shear flow. Both temporal and spatial growth rates are derived. A carefully designed numerical solver enables us to extend the range of previous calculations, and to obtain results for larger wavelengths (up to 20 cm) and stronger winds (up to a friction-velocity of 1 m s−1). The main finding is the appearance of a second unstable mode which often turns out to be the dominant one. A comparison between results from the viscous model (Orr–Sommerfeld equations) and those of the inviscid model (Rayleigh equations), for 18 cm long waves, reveals some similarity in the structure of the eigenfunctions, but a significant difference in the imaginary part of the eigenvalues (i.e. the growth rate). It is found that the growth rate for the viscous model is 10 fold larger than that of the inviscid one.
doi_str_mv 10.1017/S0022112007009858
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32741901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112007009858</cupid><sourcerecordid>1496181121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-114884c7911094b9dfc1534af698600f2aa8c6df47843eb3fe4e8d8f8538e7a53</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWKs_wLdF0LfV3DaXRym2CkVRa30M2WxStra7Ndla--_N0lJBEZ-G4Xwzc-YAcIrgJYKIXz1DiDFCGEIOoRSZ2AMdRJlMOaPZPui0ctrqh-AohCmEiEDJOwCPy2DqZUisc9Y0IamrZKU_bDKxlfW6KWOfr5PQ-LqaJKuyKsIxOHB6FuzJtnbBS_9m1LtNhw-Du971MDWUsiYeo0JQwyVCUNJcFs6gjFDtmBQMQoe1FoYVjnJBic2Js9SKQjiREWG5zkgXXGz2Lnz9vrShUfPo1c5murLRsSKYUyTjI_-BOCZEBcMRPPsBTuulr-ITLSNjKJRECG0g4-sQvHVq4cu59muFoGqzVr-yjjPn28U6GD1zXlemDLtBDBHOBKeRSzdcGRr7udO1f1OME54pNnhUr_ej_vipR5SMPNl60fPcl8XEfjv-280X52KZ2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210900143</pqid></control><display><type>article</type><title>Viscous effects on wave generation by strong winds</title><source>Cambridge University Press Journals Complete</source><creator>ZEISEL, A. ; STIASSNIE, M. ; AGNON, Y.</creator><creatorcontrib>ZEISEL, A. ; STIASSNIE, M. ; AGNON, Y.</creatorcontrib><description>This paper deals with the stability of water waves in a shear flow. Both temporal and spatial growth rates are derived. A carefully designed numerical solver enables us to extend the range of previous calculations, and to obtain results for larger wavelengths (up to 20 cm) and stronger winds (up to a friction-velocity of 1 m s−1). The main finding is the appearance of a second unstable mode which often turns out to be the dominant one. A comparison between results from the viscous model (Orr–Sommerfeld equations) and those of the inviscid model (Rayleigh equations), for 18 cm long waves, reveals some similarity in the structure of the eigenfunctions, but a significant difference in the imaginary part of the eigenvalues (i.e. the growth rate). It is found that the growth rate for the viscous model is 10 fold larger than that of the inviscid one.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112007009858</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fluid mechanics ; Physics of the oceans ; Surface waves, tides and sea level. Seiches ; Water ; Water waves ; Wavelengths ; Wind</subject><ispartof>Journal of fluid mechanics, 2008-02, Vol.597, p.343-369</ispartof><rights>Copyright © Cambridge University Press 2008</rights><rights>2008 INIST-CNRS</rights><rights>Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-114884c7911094b9dfc1534af698600f2aa8c6df47843eb3fe4e8d8f8538e7a53</citedby><cites>FETCH-LOGICAL-c446t-114884c7911094b9dfc1534af698600f2aa8c6df47843eb3fe4e8d8f8538e7a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112007009858/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20125874$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ZEISEL, A.</creatorcontrib><creatorcontrib>STIASSNIE, M.</creatorcontrib><creatorcontrib>AGNON, Y.</creatorcontrib><title>Viscous effects on wave generation by strong winds</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>This paper deals with the stability of water waves in a shear flow. Both temporal and spatial growth rates are derived. A carefully designed numerical solver enables us to extend the range of previous calculations, and to obtain results for larger wavelengths (up to 20 cm) and stronger winds (up to a friction-velocity of 1 m s−1). The main finding is the appearance of a second unstable mode which often turns out to be the dominant one. A comparison between results from the viscous model (Orr–Sommerfeld equations) and those of the inviscid model (Rayleigh equations), for 18 cm long waves, reveals some similarity in the structure of the eigenfunctions, but a significant difference in the imaginary part of the eigenvalues (i.e. the growth rate). It is found that the growth rate for the viscous model is 10 fold larger than that of the inviscid one.</description><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluid mechanics</subject><subject>Physics of the oceans</subject><subject>Surface waves, tides and sea level. Seiches</subject><subject>Water</subject><subject>Water waves</subject><subject>Wavelengths</subject><subject>Wind</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkFtLAzEQhYMoWKs_wLdF0LfV3DaXRym2CkVRa30M2WxStra7Ndla--_N0lJBEZ-G4Xwzc-YAcIrgJYKIXz1DiDFCGEIOoRSZ2AMdRJlMOaPZPui0ctrqh-AohCmEiEDJOwCPy2DqZUisc9Y0IamrZKU_bDKxlfW6KWOfr5PQ-LqaJKuyKsIxOHB6FuzJtnbBS_9m1LtNhw-Du971MDWUsiYeo0JQwyVCUNJcFs6gjFDtmBQMQoe1FoYVjnJBic2Js9SKQjiREWG5zkgXXGz2Lnz9vrShUfPo1c5murLRsSKYUyTjI_-BOCZEBcMRPPsBTuulr-ITLSNjKJRECG0g4-sQvHVq4cu59muFoGqzVr-yjjPn28U6GD1zXlemDLtBDBHOBKeRSzdcGRr7udO1f1OME54pNnhUr_ej_vipR5SMPNl60fPcl8XEfjv-280X52KZ2g</recordid><startdate>20080225</startdate><enddate>20080225</enddate><creator>ZEISEL, A.</creator><creator>STIASSNIE, M.</creator><creator>AGNON, Y.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20080225</creationdate><title>Viscous effects on wave generation by strong winds</title><author>ZEISEL, A. ; STIASSNIE, M. ; AGNON, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-114884c7911094b9dfc1534af698600f2aa8c6df47843eb3fe4e8d8f8538e7a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluid mechanics</topic><topic>Physics of the oceans</topic><topic>Surface waves, tides and sea level. Seiches</topic><topic>Water</topic><topic>Water waves</topic><topic>Wavelengths</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZEISEL, A.</creatorcontrib><creatorcontrib>STIASSNIE, M.</creatorcontrib><creatorcontrib>AGNON, Y.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZEISEL, A.</au><au>STIASSNIE, M.</au><au>AGNON, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscous effects on wave generation by strong winds</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2008-02-25</date><risdate>2008</risdate><volume>597</volume><spage>343</spage><epage>369</epage><pages>343-369</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>This paper deals with the stability of water waves in a shear flow. Both temporal and spatial growth rates are derived. A carefully designed numerical solver enables us to extend the range of previous calculations, and to obtain results for larger wavelengths (up to 20 cm) and stronger winds (up to a friction-velocity of 1 m s−1). The main finding is the appearance of a second unstable mode which often turns out to be the dominant one. A comparison between results from the viscous model (Orr–Sommerfeld equations) and those of the inviscid model (Rayleigh equations), for 18 cm long waves, reveals some similarity in the structure of the eigenfunctions, but a significant difference in the imaginary part of the eigenvalues (i.e. the growth rate). It is found that the growth rate for the viscous model is 10 fold larger than that of the inviscid one.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112007009858</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2008-02, Vol.597, p.343-369
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_32741901
source Cambridge University Press Journals Complete
subjects Earth, ocean, space
Exact sciences and technology
External geophysics
Fluid mechanics
Physics of the oceans
Surface waves, tides and sea level. Seiches
Water
Water waves
Wavelengths
Wind
title Viscous effects on wave generation by strong winds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscous%20effects%20on%20wave%20generation%20by%20strong%20winds&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=ZEISEL,%20A.&rft.date=2008-02-25&rft.volume=597&rft.spage=343&rft.epage=369&rft.pages=343-369&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112007009858&rft_dat=%3Cproquest_cross%3E1496181121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210900143&rft_id=info:pmid/&rft_cupid=10_1017_S0022112007009858&rfr_iscdi=true