The exact boundary blow-up rate of large solutions for semilinear elliptic problems

In this paper, we establish the blow-up rate of the large positive solution of the singular boundary value problem − △ u = λ u − a ( x ) u p , u | ∂ Ω = + ∞ , where Ω is a bounded smooth domain in R N . The weight function a ( x ) in front of the nonlinearity can vanish on the boundary of the domain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2008-05, Vol.68 (9), p.2791-2800
Hauptverfasser: Ouyang, Tiancheng, Xie, Zhifu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2800
container_issue 9
container_start_page 2791
container_title Nonlinear analysis
container_volume 68
creator Ouyang, Tiancheng
Xie, Zhifu
description In this paper, we establish the blow-up rate of the large positive solution of the singular boundary value problem − △ u = λ u − a ( x ) u p , u | ∂ Ω = + ∞ , where Ω is a bounded smooth domain in R N . The weight function a ( x ) in front of the nonlinearity can vanish on the boundary of the domain Ω at different rates according to the point x 0 of the boundary. The decay rate of the weight function a ( x ) may not be approximated by a power function of distance near the boundary ∂ Ω . We combine the localization method of [J. López-Gómez, The boundary blow-up rate of large solutions, J. Differential Equations 195 (2003) 25–45] with some previous radially symmetric results of [T. Ouyang, Z. Xie, The uniqueness of blow-up solution for radially symmetric semilinear elliptic equation, Nonlinear Anal. 64 (9) (2006) 2129–2142] to prove that any large solution u ( x ) must satisfy lim x → x 0 u ( x ) K ( b x 0 ∗ ( dist ( x , ∂ Ω ) ) ) − β = 1 for each  x 0 ∈ ∂ Ω , where b x 0 ∗ ( r ) = ∫ 0 r ∫ 0 s b x 0 ( t ) d t d s , K = [ β ( ( β + 1 ) C 0 − 1 ) ] 1 p − 1 , β = 1 p − 1 , C 0 = lim r → 0 ( ∫ 0 r b x 0 ( t ) d t ) 2 b x 0 ∗ ( r ) b x 0 ( r ) and b x 0 ( r ) is the boundary normal section of a ( x ) at x 0 ∈ ∂ Ω , i.e.,  b x 0 ( r ) = a ( x 0 − r n x 0 ) , r > 0 , r ∼ 0 , and n x 0 stands for the outward unit normal vector at x 0 ∈ ∂ Ω .
doi_str_mv 10.1016/j.na.2007.02.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32706397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X07001757</els_id><sourcerecordid>32706397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-50f425db88b90efea74f30fcb0336c0a55beaa421937cc72f29e0a10880490143</originalsourceid><addsrcrecordid>eNp1UE1rGzEQFaWFum7uPerS3NYdSav96K2EfBQCOdSF3MSsPEpk5JUr7Sbpv4-MTW6BB3N5H_MeY98ErASI5sd2NeJKArQrkAXNB7YQXasqLYX-yBagGlnpurn_zL7kvAUA0apmwf6sH4nTC9qJD3EeN5j-8yHE52re84QT8eh4wPRAPMcwTz6OmbuYeKadD34kTJxC8PvJW75PcQi0y1_ZJ4ch09npLtnfq8v1xU11e3f9--LXbWWV1lOlwdVSb4auG3ogR9jWToGzAyjVWECtB0KspehVa20rnewJUEDXQd2DqNWSnR99S_C_mfJkdj7b8g6OFOdslGyhUX1biHAk2hRzTuTMPvldqWoEmMN6ZmtGNIf1DMiCpki-n7wxWwwu4Wh9ftPJMp-G7sD7eeRRKfrkKZlsPY2WNj6Rncwm-vdDXgHbRoQl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32706397</pqid></control><display><type>article</type><title>The exact boundary blow-up rate of large solutions for semilinear elliptic problems</title><source>Elsevier ScienceDirect Journals</source><creator>Ouyang, Tiancheng ; Xie, Zhifu</creator><creatorcontrib>Ouyang, Tiancheng ; Xie, Zhifu</creatorcontrib><description>In this paper, we establish the blow-up rate of the large positive solution of the singular boundary value problem − △ u = λ u − a ( x ) u p , u | ∂ Ω = + ∞ , where Ω is a bounded smooth domain in R N . The weight function a ( x ) in front of the nonlinearity can vanish on the boundary of the domain Ω at different rates according to the point x 0 of the boundary. The decay rate of the weight function a ( x ) may not be approximated by a power function of distance near the boundary ∂ Ω . We combine the localization method of [J. López-Gómez, The boundary blow-up rate of large solutions, J. Differential Equations 195 (2003) 25–45] with some previous radially symmetric results of [T. Ouyang, Z. Xie, The uniqueness of blow-up solution for radially symmetric semilinear elliptic equation, Nonlinear Anal. 64 (9) (2006) 2129–2142] to prove that any large solution u ( x ) must satisfy lim x → x 0 u ( x ) K ( b x 0 ∗ ( dist ( x , ∂ Ω ) ) ) − β = 1 for each  x 0 ∈ ∂ Ω , where b x 0 ∗ ( r ) = ∫ 0 r ∫ 0 s b x 0 ( t ) d t d s , K = [ β ( ( β + 1 ) C 0 − 1 ) ] 1 p − 1 , β = 1 p − 1 , C 0 = lim r → 0 ( ∫ 0 r b x 0 ( t ) d t ) 2 b x 0 ∗ ( r ) b x 0 ( r ) and b x 0 ( r ) is the boundary normal section of a ( x ) at x 0 ∈ ∂ Ω , i.e.,  b x 0 ( r ) = a ( x 0 − r n x 0 ) , r &gt; 0 , r ∼ 0 , and n x 0 stands for the outward unit normal vector at x 0 ∈ ∂ Ω .</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2007.02.026</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Blow-up rate ; Exact sciences and technology ; Large positive solution ; Mathematical analysis ; Mathematics ; Partial differential equations ; Sciences and techniques of general use ; Semilinear elliptic equation ; Uniqueness</subject><ispartof>Nonlinear analysis, 2008-05, Vol.68 (9), p.2791-2800</ispartof><rights>2007 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-50f425db88b90efea74f30fcb0336c0a55beaa421937cc72f29e0a10880490143</citedby><cites>FETCH-LOGICAL-c355t-50f425db88b90efea74f30fcb0336c0a55beaa421937cc72f29e0a10880490143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X07001757$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20175086$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ouyang, Tiancheng</creatorcontrib><creatorcontrib>Xie, Zhifu</creatorcontrib><title>The exact boundary blow-up rate of large solutions for semilinear elliptic problems</title><title>Nonlinear analysis</title><description>In this paper, we establish the blow-up rate of the large positive solution of the singular boundary value problem − △ u = λ u − a ( x ) u p , u | ∂ Ω = + ∞ , where Ω is a bounded smooth domain in R N . The weight function a ( x ) in front of the nonlinearity can vanish on the boundary of the domain Ω at different rates according to the point x 0 of the boundary. The decay rate of the weight function a ( x ) may not be approximated by a power function of distance near the boundary ∂ Ω . We combine the localization method of [J. López-Gómez, The boundary blow-up rate of large solutions, J. Differential Equations 195 (2003) 25–45] with some previous radially symmetric results of [T. Ouyang, Z. Xie, The uniqueness of blow-up solution for radially symmetric semilinear elliptic equation, Nonlinear Anal. 64 (9) (2006) 2129–2142] to prove that any large solution u ( x ) must satisfy lim x → x 0 u ( x ) K ( b x 0 ∗ ( dist ( x , ∂ Ω ) ) ) − β = 1 for each  x 0 ∈ ∂ Ω , where b x 0 ∗ ( r ) = ∫ 0 r ∫ 0 s b x 0 ( t ) d t d s , K = [ β ( ( β + 1 ) C 0 − 1 ) ] 1 p − 1 , β = 1 p − 1 , C 0 = lim r → 0 ( ∫ 0 r b x 0 ( t ) d t ) 2 b x 0 ∗ ( r ) b x 0 ( r ) and b x 0 ( r ) is the boundary normal section of a ( x ) at x 0 ∈ ∂ Ω , i.e.,  b x 0 ( r ) = a ( x 0 − r n x 0 ) , r &gt; 0 , r ∼ 0 , and n x 0 stands for the outward unit normal vector at x 0 ∈ ∂ Ω .</description><subject>Blow-up rate</subject><subject>Exact sciences and technology</subject><subject>Large positive solution</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Semilinear elliptic equation</subject><subject>Uniqueness</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1UE1rGzEQFaWFum7uPerS3NYdSav96K2EfBQCOdSF3MSsPEpk5JUr7Sbpv4-MTW6BB3N5H_MeY98ErASI5sd2NeJKArQrkAXNB7YQXasqLYX-yBagGlnpurn_zL7kvAUA0apmwf6sH4nTC9qJD3EeN5j-8yHE52re84QT8eh4wPRAPMcwTz6OmbuYeKadD34kTJxC8PvJW75PcQi0y1_ZJ4ch09npLtnfq8v1xU11e3f9--LXbWWV1lOlwdVSb4auG3ogR9jWToGzAyjVWECtB0KspehVa20rnewJUEDXQd2DqNWSnR99S_C_mfJkdj7b8g6OFOdslGyhUX1biHAk2hRzTuTMPvldqWoEmMN6ZmtGNIf1DMiCpki-n7wxWwwu4Wh9ftPJMp-G7sD7eeRRKfrkKZlsPY2WNj6Rncwm-vdDXgHbRoQl</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Ouyang, Tiancheng</creator><creator>Xie, Zhifu</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080501</creationdate><title>The exact boundary blow-up rate of large solutions for semilinear elliptic problems</title><author>Ouyang, Tiancheng ; Xie, Zhifu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-50f425db88b90efea74f30fcb0336c0a55beaa421937cc72f29e0a10880490143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Blow-up rate</topic><topic>Exact sciences and technology</topic><topic>Large positive solution</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Semilinear elliptic equation</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouyang, Tiancheng</creatorcontrib><creatorcontrib>Xie, Zhifu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouyang, Tiancheng</au><au>Xie, Zhifu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The exact boundary blow-up rate of large solutions for semilinear elliptic problems</atitle><jtitle>Nonlinear analysis</jtitle><date>2008-05-01</date><risdate>2008</risdate><volume>68</volume><issue>9</issue><spage>2791</spage><epage>2800</epage><pages>2791-2800</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>In this paper, we establish the blow-up rate of the large positive solution of the singular boundary value problem − △ u = λ u − a ( x ) u p , u | ∂ Ω = + ∞ , where Ω is a bounded smooth domain in R N . The weight function a ( x ) in front of the nonlinearity can vanish on the boundary of the domain Ω at different rates according to the point x 0 of the boundary. The decay rate of the weight function a ( x ) may not be approximated by a power function of distance near the boundary ∂ Ω . We combine the localization method of [J. López-Gómez, The boundary blow-up rate of large solutions, J. Differential Equations 195 (2003) 25–45] with some previous radially symmetric results of [T. Ouyang, Z. Xie, The uniqueness of blow-up solution for radially symmetric semilinear elliptic equation, Nonlinear Anal. 64 (9) (2006) 2129–2142] to prove that any large solution u ( x ) must satisfy lim x → x 0 u ( x ) K ( b x 0 ∗ ( dist ( x , ∂ Ω ) ) ) − β = 1 for each  x 0 ∈ ∂ Ω , where b x 0 ∗ ( r ) = ∫ 0 r ∫ 0 s b x 0 ( t ) d t d s , K = [ β ( ( β + 1 ) C 0 − 1 ) ] 1 p − 1 , β = 1 p − 1 , C 0 = lim r → 0 ( ∫ 0 r b x 0 ( t ) d t ) 2 b x 0 ∗ ( r ) b x 0 ( r ) and b x 0 ( r ) is the boundary normal section of a ( x ) at x 0 ∈ ∂ Ω , i.e.,  b x 0 ( r ) = a ( x 0 − r n x 0 ) , r &gt; 0 , r ∼ 0 , and n x 0 stands for the outward unit normal vector at x 0 ∈ ∂ Ω .</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2007.02.026</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2008-05, Vol.68 (9), p.2791-2800
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_32706397
source Elsevier ScienceDirect Journals
subjects Blow-up rate
Exact sciences and technology
Large positive solution
Mathematical analysis
Mathematics
Partial differential equations
Sciences and techniques of general use
Semilinear elliptic equation
Uniqueness
title The exact boundary blow-up rate of large solutions for semilinear elliptic problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20exact%20boundary%20blow-up%20rate%20of%20large%20solutions%20for%20semilinear%20elliptic%20problems&rft.jtitle=Nonlinear%20analysis&rft.au=Ouyang,%20Tiancheng&rft.date=2008-05-01&rft.volume=68&rft.issue=9&rft.spage=2791&rft.epage=2800&rft.pages=2791-2800&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2007.02.026&rft_dat=%3Cproquest_cross%3E32706397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32706397&rft_id=info:pmid/&rft_els_id=S0362546X07001757&rfr_iscdi=true