The effect of oblique functional gradation to thermal stresses in the functionally graded infinite strip

Summary Thermal stresses in a functionally graded infinite strip (FGIS) which has an oblique boundary to its functional gradation are studied theoretically. The rigorous solution is derived by the use of the variable separation and the stress function methods. The material properties are assumed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2008-03, Vol.196 (3-4), p.219-237
Hauptverfasser: Ohmichi, M., Noda, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue 3-4
container_start_page 219
container_title Acta mechanica
container_volume 196
creator Ohmichi, M.
Noda, N.
description Summary Thermal stresses in a functionally graded infinite strip (FGIS) which has an oblique boundary to its functional gradation are studied theoretically. The rigorous solution is derived by the use of the variable separation and the stress function methods. The material properties are assumed to be exponential functions of the position along the functional grading direction. Two types of boundary conditions are considered, one is the case of prescribed heat flux on the heating surface and the other is the case of prescribed temperature on the same surface. The numerical calculations are carried out for ZrO 2 /Ti-6Al-4V functionally graded materials (FGMs). The numerical results of temperature and thermal stresses are illustrated in figures for different values of obliqueness angle θ . Numerical results show that the temperature curve leans to the ceramic-rich side and the values of compressive and tensile stresses drastically decrease when the obliqueness angle θ varies from 0 to 90 degrees. For the positions of the maximum compression and the maximum tension, after they shift to the left-hand side from the origin ( X * = 0.0, θ = 0°), they shift to the right-hand side till θ = 90° passing the origin at 45°.
doi_str_mv 10.1007/s00707-007-0471-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32700393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1453008121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-e234452f23b0ba7a79cbed18fbdd73edf63adb3d79fbf9fb7a55b36ed36bab0b3</originalsourceid><addsrcrecordid>eNqNkU1LJDEQhoMoOH78AG-NsOKltZL0dE0fF9lVQfCi5ybpVJxIT_dsqufgv9_EEZWFFQ-V1MdTL5WUECcSLiQAXnI6AEvIVqEscUfMZC2bsm407ooZAMhy3iDsiwPm5xQprORMLB-WVJD31E3F6IvR9uHPhgq_GbopjIPpi6donMl-MY3FtKS4SkmeIjETF2HIuU98__LaQS6VfBjCRBkO6yOx503PdPx2H4rH378erm7Ku_vr26ufd2VXVWoqSemqmiuvtAVr0GDTWXJy4a1zqMn5WhtntcPGW58MzXxudU1O19akFn0ozra66ziml_DUrgJ31PdmoHHDrVYIoBudwPMvQQkLpUCjxG-igItFQk__QZ_HTUz_wq1SupZS6gzJLdTFkTmSb9cxrEx8SUptXme7XWeb3bzONs_w403YcGd6H83QBX5vVKAAsa4Tp7Ycp9LwRPFjgP-L_wUOjLDI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223611138</pqid></control><display><type>article</type><title>The effect of oblique functional gradation to thermal stresses in the functionally graded infinite strip</title><source>SpringerNature Journals</source><creator>Ohmichi, M. ; Noda, N.</creator><creatorcontrib>Ohmichi, M. ; Noda, N.</creatorcontrib><description>Summary Thermal stresses in a functionally graded infinite strip (FGIS) which has an oblique boundary to its functional gradation are studied theoretically. The rigorous solution is derived by the use of the variable separation and the stress function methods. The material properties are assumed to be exponential functions of the position along the functional grading direction. Two types of boundary conditions are considered, one is the case of prescribed heat flux on the heating surface and the other is the case of prescribed temperature on the same surface. The numerical calculations are carried out for ZrO 2 /Ti-6Al-4V functionally graded materials (FGMs). The numerical results of temperature and thermal stresses are illustrated in figures for different values of obliqueness angle θ . Numerical results show that the temperature curve leans to the ceramic-rich side and the values of compressive and tensile stresses drastically decrease when the obliqueness angle θ varies from 0 to 90 degrees. For the positions of the maximum compression and the maximum tension, after they shift to the left-hand side from the origin ( X * = 0.0, θ = 0°), they shift to the right-hand side till θ = 90° passing the origin at 45°.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-007-0471-7</identifier><identifier>CODEN: AMHCAP</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Classical and Continuum Physics ; Control ; Dynamical Systems ; Engineering ; Engineering Thermodynamics ; Exact sciences and technology ; Exponential functions ; Functionally gradient materials ; Fundamental areas of phenomenology (including applications) ; Grading ; Heat and Mass Transfer ; Mechanical engineering ; Obliqueness ; Origins ; Physics ; Solid Mechanics ; Static elasticity (thermoelasticity...) ; Strip ; Structural and continuum mechanics ; Temperature ; Theoretical and Applied Mechanics ; Thermal stresses ; Vibration ; Zirconium dioxide</subject><ispartof>Acta mechanica, 2008-03, Vol.196 (3-4), p.219-237</ispartof><rights>Springer-Verlag 2007</rights><rights>2008 INIST-CNRS</rights><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-e234452f23b0ba7a79cbed18fbdd73edf63adb3d79fbf9fb7a55b36ed36bab0b3</citedby><cites>FETCH-LOGICAL-c442t-e234452f23b0ba7a79cbed18fbdd73edf63adb3d79fbf9fb7a55b36ed36bab0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-007-0471-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-007-0471-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20207766$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohmichi, M.</creatorcontrib><creatorcontrib>Noda, N.</creatorcontrib><title>The effect of oblique functional gradation to thermal stresses in the functionally graded infinite strip</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>Summary Thermal stresses in a functionally graded infinite strip (FGIS) which has an oblique boundary to its functional gradation are studied theoretically. The rigorous solution is derived by the use of the variable separation and the stress function methods. The material properties are assumed to be exponential functions of the position along the functional grading direction. Two types of boundary conditions are considered, one is the case of prescribed heat flux on the heating surface and the other is the case of prescribed temperature on the same surface. The numerical calculations are carried out for ZrO 2 /Ti-6Al-4V functionally graded materials (FGMs). The numerical results of temperature and thermal stresses are illustrated in figures for different values of obliqueness angle θ . Numerical results show that the temperature curve leans to the ceramic-rich side and the values of compressive and tensile stresses drastically decrease when the obliqueness angle θ varies from 0 to 90 degrees. For the positions of the maximum compression and the maximum tension, after they shift to the left-hand side from the origin ( X * = 0.0, θ = 0°), they shift to the right-hand side till θ = 90° passing the origin at 45°.</description><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Exact sciences and technology</subject><subject>Exponential functions</subject><subject>Functionally gradient materials</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Grading</subject><subject>Heat and Mass Transfer</subject><subject>Mechanical engineering</subject><subject>Obliqueness</subject><subject>Origins</subject><subject>Physics</subject><subject>Solid Mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Strip</subject><subject>Structural and continuum mechanics</subject><subject>Temperature</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermal stresses</subject><subject>Vibration</subject><subject>Zirconium dioxide</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU1LJDEQhoMoOH78AG-NsOKltZL0dE0fF9lVQfCi5ybpVJxIT_dsqufgv9_EEZWFFQ-V1MdTL5WUECcSLiQAXnI6AEvIVqEscUfMZC2bsm407ooZAMhy3iDsiwPm5xQprORMLB-WVJD31E3F6IvR9uHPhgq_GbopjIPpi6donMl-MY3FtKS4SkmeIjETF2HIuU98__LaQS6VfBjCRBkO6yOx503PdPx2H4rH378erm7Ku_vr26ufd2VXVWoqSemqmiuvtAVr0GDTWXJy4a1zqMn5WhtntcPGW58MzXxudU1O19akFn0ozra66ziml_DUrgJ31PdmoHHDrVYIoBudwPMvQQkLpUCjxG-igItFQk__QZ_HTUz_wq1SupZS6gzJLdTFkTmSb9cxrEx8SUptXme7XWeb3bzONs_w403YcGd6H83QBX5vVKAAsa4Tp7Ycp9LwRPFjgP-L_wUOjLDI</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Ohmichi, M.</creator><creator>Noda, N.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7QQ</scope><scope>JG9</scope></search><sort><creationdate>20080301</creationdate><title>The effect of oblique functional gradation to thermal stresses in the functionally graded infinite strip</title><author>Ohmichi, M. ; Noda, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-e234452f23b0ba7a79cbed18fbdd73edf63adb3d79fbf9fb7a55b36ed36bab0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Exact sciences and technology</topic><topic>Exponential functions</topic><topic>Functionally gradient materials</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Grading</topic><topic>Heat and Mass Transfer</topic><topic>Mechanical engineering</topic><topic>Obliqueness</topic><topic>Origins</topic><topic>Physics</topic><topic>Solid Mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Strip</topic><topic>Structural and continuum mechanics</topic><topic>Temperature</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermal stresses</topic><topic>Vibration</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohmichi, M.</creatorcontrib><creatorcontrib>Noda, N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Ceramic Abstracts</collection><collection>Materials Research Database</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohmichi, M.</au><au>Noda, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of oblique functional gradation to thermal stresses in the functionally graded infinite strip</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>196</volume><issue>3-4</issue><spage>219</spage><epage>237</epage><pages>219-237</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><coden>AMHCAP</coden><abstract>Summary Thermal stresses in a functionally graded infinite strip (FGIS) which has an oblique boundary to its functional gradation are studied theoretically. The rigorous solution is derived by the use of the variable separation and the stress function methods. The material properties are assumed to be exponential functions of the position along the functional grading direction. Two types of boundary conditions are considered, one is the case of prescribed heat flux on the heating surface and the other is the case of prescribed temperature on the same surface. The numerical calculations are carried out for ZrO 2 /Ti-6Al-4V functionally graded materials (FGMs). The numerical results of temperature and thermal stresses are illustrated in figures for different values of obliqueness angle θ . Numerical results show that the temperature curve leans to the ceramic-rich side and the values of compressive and tensile stresses drastically decrease when the obliqueness angle θ varies from 0 to 90 degrees. For the positions of the maximum compression and the maximum tension, after they shift to the left-hand side from the origin ( X * = 0.0, θ = 0°), they shift to the right-hand side till θ = 90° passing the origin at 45°.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-007-0471-7</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2008-03, Vol.196 (3-4), p.219-237
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_miscellaneous_32700393
source SpringerNature Journals
subjects Classical and Continuum Physics
Control
Dynamical Systems
Engineering
Engineering Thermodynamics
Exact sciences and technology
Exponential functions
Functionally gradient materials
Fundamental areas of phenomenology (including applications)
Grading
Heat and Mass Transfer
Mechanical engineering
Obliqueness
Origins
Physics
Solid Mechanics
Static elasticity (thermoelasticity...)
Strip
Structural and continuum mechanics
Temperature
Theoretical and Applied Mechanics
Thermal stresses
Vibration
Zirconium dioxide
title The effect of oblique functional gradation to thermal stresses in the functionally graded infinite strip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T05%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20oblique%20functional%20gradation%20to%20thermal%20stresses%20in%20the%20functionally%20graded%20infinite%20strip&rft.jtitle=Acta%20mechanica&rft.au=Ohmichi,%20M.&rft.date=2008-03-01&rft.volume=196&rft.issue=3-4&rft.spage=219&rft.epage=237&rft.pages=219-237&rft.issn=0001-5970&rft.eissn=1619-6937&rft.coden=AMHCAP&rft_id=info:doi/10.1007/s00707-007-0471-7&rft_dat=%3Cproquest_cross%3E1453008121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223611138&rft_id=info:pmid/&rfr_iscdi=true