Scan Test Response Compaction Combined with Diagnosis Capabilities

As today’s process technologies are combined with ever increasing design sizes, the result is a dramatic increase in the number of scan test vectors that must be applied during manufacturing test. The increased chip complexities, in combination with the smaller feature sizes, require that we now add...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic testing 2008-06, Vol.24 (1-3), p.235-246
Hauptverfasser: Wichlund, Sverre, Berntsen, Frank, Aas, Einar Johan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 246
container_issue 1-3
container_start_page 235
container_title Journal of electronic testing
container_volume 24
creator Wichlund, Sverre
Berntsen, Frank
Aas, Einar Johan
description As today’s process technologies are combined with ever increasing design sizes, the result is a dramatic increase in the number of scan test vectors that must be applied during manufacturing test. The increased chip complexities, in combination with the smaller feature sizes, require that we now address defect mechanisms that safely could be more or less ignored in earlier technologies. Scan based delay fault testing (AC-scan) enhances defect coverage as it addresses the dynamic behavior of the circuit under test. Unfortunately, the growing number of scan test vectors may in turn result in costly tester reloads and unacceptable test application times. In this paper, we devise a new scan test response compaction scheme based on finite memory compaction (a class of compactors originally proposed in Rajski et al., Convolutional compaction of test responses , 2003). Our scheme is diagnosis friendly, which is important when it comes to maintain throughput on the test floor (Leininger et al., Compression mode diagnosis enables high volume monitoring diagnosis flow , 2005; Stanojevic et al., Enabling yield analysis with X-compact , 2005). Yet, the compactor has comparable performance to other schemes (Mitra et al., X-compact: an efficient response compaction technique , 2004; Mitra S et al., X-tolerant test response compaction , 2005; Rajski et al., Convolutional compaction of test responses , 2003) when it comes to ‘X’ tolerance and aliasing.
doi_str_mv 10.1007/s10836-007-5043-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32634044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897964441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-99352f4c07f305fb7058bdffc8f84845718e7cfa084322ac966424bcab8883c3</originalsourceid><addsrcrecordid>eNp1kE1LxDAYhIMouK7-AG_Fg7dovtqkR62fsCDo3kOaTdYsu0nt20X896ZUEARPM4dnhmEQOqfkihIir4ESxSucLS6J4JgeoBktJcdEMnmIZqRmHCsqxTE6AdiQDLKymqHbN2tisXQwFK8OuhTBFU3adcYOIcXRtiG6VfEZhvfiLph1TBCgaExn2rANQ3Bwio682YI7-9E5Wj7cL5snvHh5fG5uFthyUQ24rnnJvLBEek5K30pSqnblvVVeCSVKSZWT1huiBGfM2LqqBBOtNa1Sils-R5dTbdenj30erHcBrNtuTXRpD5qzigsiRAYv_oCbtO9jnqYZFbSmgqsM0QmyfQLondddH3am_9KU6PFRPT2qRzs-qmnOsCkDmY1r1_8W_x_6Bi-rd3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214191438</pqid></control><display><type>article</type><title>Scan Test Response Compaction Combined with Diagnosis Capabilities</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wichlund, Sverre ; Berntsen, Frank ; Aas, Einar Johan</creator><creatorcontrib>Wichlund, Sverre ; Berntsen, Frank ; Aas, Einar Johan</creatorcontrib><description>As today’s process technologies are combined with ever increasing design sizes, the result is a dramatic increase in the number of scan test vectors that must be applied during manufacturing test. The increased chip complexities, in combination with the smaller feature sizes, require that we now address defect mechanisms that safely could be more or less ignored in earlier technologies. Scan based delay fault testing (AC-scan) enhances defect coverage as it addresses the dynamic behavior of the circuit under test. Unfortunately, the growing number of scan test vectors may in turn result in costly tester reloads and unacceptable test application times. In this paper, we devise a new scan test response compaction scheme based on finite memory compaction (a class of compactors originally proposed in Rajski et al., Convolutional compaction of test responses , 2003). Our scheme is diagnosis friendly, which is important when it comes to maintain throughput on the test floor (Leininger et al., Compression mode diagnosis enables high volume monitoring diagnosis flow , 2005; Stanojevic et al., Enabling yield analysis with X-compact , 2005). Yet, the compactor has comparable performance to other schemes (Mitra et al., X-compact: an efficient response compaction technique , 2004; Mitra S et al., X-tolerant test response compaction , 2005; Rajski et al., Convolutional compaction of test responses , 2003) when it comes to ‘X’ tolerance and aliasing.</description><identifier>ISSN: 0923-8174</identifier><identifier>EISSN: 1573-0727</identifier><identifier>DOI: 10.1007/s10836-007-5043-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>CAE) and Design ; Circuits and Systems ; Computer engineering ; Computer-Aided Engineering (CAD ; Electrical Engineering ; Engineering ; Fault diagnosis ; Information technology ; Scanning ; Semiconductors</subject><ispartof>Journal of electronic testing, 2008-06, Vol.24 (1-3), p.235-246</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-99352f4c07f305fb7058bdffc8f84845718e7cfa084322ac966424bcab8883c3</citedby><cites>FETCH-LOGICAL-c346t-99352f4c07f305fb7058bdffc8f84845718e7cfa084322ac966424bcab8883c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10836-007-5043-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10836-007-5043-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Wichlund, Sverre</creatorcontrib><creatorcontrib>Berntsen, Frank</creatorcontrib><creatorcontrib>Aas, Einar Johan</creatorcontrib><title>Scan Test Response Compaction Combined with Diagnosis Capabilities</title><title>Journal of electronic testing</title><addtitle>J Electron Test</addtitle><description>As today’s process technologies are combined with ever increasing design sizes, the result is a dramatic increase in the number of scan test vectors that must be applied during manufacturing test. The increased chip complexities, in combination with the smaller feature sizes, require that we now address defect mechanisms that safely could be more or less ignored in earlier technologies. Scan based delay fault testing (AC-scan) enhances defect coverage as it addresses the dynamic behavior of the circuit under test. Unfortunately, the growing number of scan test vectors may in turn result in costly tester reloads and unacceptable test application times. In this paper, we devise a new scan test response compaction scheme based on finite memory compaction (a class of compactors originally proposed in Rajski et al., Convolutional compaction of test responses , 2003). Our scheme is diagnosis friendly, which is important when it comes to maintain throughput on the test floor (Leininger et al., Compression mode diagnosis enables high volume monitoring diagnosis flow , 2005; Stanojevic et al., Enabling yield analysis with X-compact , 2005). Yet, the compactor has comparable performance to other schemes (Mitra et al., X-compact: an efficient response compaction technique , 2004; Mitra S et al., X-tolerant test response compaction , 2005; Rajski et al., Convolutional compaction of test responses , 2003) when it comes to ‘X’ tolerance and aliasing.</description><subject>CAE) and Design</subject><subject>Circuits and Systems</subject><subject>Computer engineering</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Fault diagnosis</subject><subject>Information technology</subject><subject>Scanning</subject><subject>Semiconductors</subject><issn>0923-8174</issn><issn>1573-0727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAYhIMouK7-AG_Fg7dovtqkR62fsCDo3kOaTdYsu0nt20X896ZUEARPM4dnhmEQOqfkihIir4ESxSucLS6J4JgeoBktJcdEMnmIZqRmHCsqxTE6AdiQDLKymqHbN2tisXQwFK8OuhTBFU3adcYOIcXRtiG6VfEZhvfiLph1TBCgaExn2rANQ3Bwio682YI7-9E5Wj7cL5snvHh5fG5uFthyUQ24rnnJvLBEek5K30pSqnblvVVeCSVKSZWT1huiBGfM2LqqBBOtNa1Sils-R5dTbdenj30erHcBrNtuTXRpD5qzigsiRAYv_oCbtO9jnqYZFbSmgqsM0QmyfQLondddH3am_9KU6PFRPT2qRzs-qmnOsCkDmY1r1_8W_x_6Bi-rd3w</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Wichlund, Sverre</creator><creator>Berntsen, Frank</creator><creator>Aas, Einar Johan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>88K</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20080601</creationdate><title>Scan Test Response Compaction Combined with Diagnosis Capabilities</title><author>Wichlund, Sverre ; Berntsen, Frank ; Aas, Einar Johan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-99352f4c07f305fb7058bdffc8f84845718e7cfa084322ac966424bcab8883c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>CAE) and Design</topic><topic>Circuits and Systems</topic><topic>Computer engineering</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Fault diagnosis</topic><topic>Information technology</topic><topic>Scanning</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wichlund, Sverre</creatorcontrib><creatorcontrib>Berntsen, Frank</creatorcontrib><creatorcontrib>Aas, Einar Johan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of electronic testing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wichlund, Sverre</au><au>Berntsen, Frank</au><au>Aas, Einar Johan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scan Test Response Compaction Combined with Diagnosis Capabilities</atitle><jtitle>Journal of electronic testing</jtitle><stitle>J Electron Test</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>24</volume><issue>1-3</issue><spage>235</spage><epage>246</epage><pages>235-246</pages><issn>0923-8174</issn><eissn>1573-0727</eissn><abstract>As today’s process technologies are combined with ever increasing design sizes, the result is a dramatic increase in the number of scan test vectors that must be applied during manufacturing test. The increased chip complexities, in combination with the smaller feature sizes, require that we now address defect mechanisms that safely could be more or less ignored in earlier technologies. Scan based delay fault testing (AC-scan) enhances defect coverage as it addresses the dynamic behavior of the circuit under test. Unfortunately, the growing number of scan test vectors may in turn result in costly tester reloads and unacceptable test application times. In this paper, we devise a new scan test response compaction scheme based on finite memory compaction (a class of compactors originally proposed in Rajski et al., Convolutional compaction of test responses , 2003). Our scheme is diagnosis friendly, which is important when it comes to maintain throughput on the test floor (Leininger et al., Compression mode diagnosis enables high volume monitoring diagnosis flow , 2005; Stanojevic et al., Enabling yield analysis with X-compact , 2005). Yet, the compactor has comparable performance to other schemes (Mitra et al., X-compact: an efficient response compaction technique , 2004; Mitra S et al., X-tolerant test response compaction , 2005; Rajski et al., Convolutional compaction of test responses , 2003) when it comes to ‘X’ tolerance and aliasing.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10836-007-5043-1</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0923-8174
ispartof Journal of electronic testing, 2008-06, Vol.24 (1-3), p.235-246
issn 0923-8174
1573-0727
language eng
recordid cdi_proquest_miscellaneous_32634044
source SpringerLink Journals - AutoHoldings
subjects CAE) and Design
Circuits and Systems
Computer engineering
Computer-Aided Engineering (CAD
Electrical Engineering
Engineering
Fault diagnosis
Information technology
Scanning
Semiconductors
title Scan Test Response Compaction Combined with Diagnosis Capabilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scan%20Test%20Response%20Compaction%20Combined%20with%20Diagnosis%20Capabilities&rft.jtitle=Journal%20of%20electronic%20testing&rft.au=Wichlund,%20Sverre&rft.date=2008-06-01&rft.volume=24&rft.issue=1-3&rft.spage=235&rft.epage=246&rft.pages=235-246&rft.issn=0923-8174&rft.eissn=1573-0727&rft_id=info:doi/10.1007/s10836-007-5043-1&rft_dat=%3Cproquest_cross%3E1897964441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214191438&rft_id=info:pmid/&rfr_iscdi=true