Research Advances in the Dynamic Stability Behavior of Plates and Shells: 1987–2005—Part I: Conservative Systems

This paper reviews most of the recent research done in the field of dynamic stability/dynamic instability/parametric excitation/parametric resonance characteristics of structures with special attention to parametric excitation of plate and shell structures. The solution of dynamic stability problems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mechanics reviews 2007-03, Vol.60 (2), p.65-75
Hauptverfasser: Sahu, S. K, Datta, P. K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 2
container_start_page 65
container_title Applied mechanics reviews
container_volume 60
creator Sahu, S. K
Datta, P. K
description This paper reviews most of the recent research done in the field of dynamic stability/dynamic instability/parametric excitation/parametric resonance characteristics of structures with special attention to parametric excitation of plate and shell structures. The solution of dynamic stability problems involves derivation of the equation of motion, discretization, and determination of dynamic instability regions of the structures. The purpose of this study is to review most of the recent research on dynamic stability in terms of the geometry (plates, cylindrical, spherical, and conical shells), type of loading (uniaxial uniform, patch, point loading …), boundary conditions (SSSS, SCSC, CCCC …), method of analysis (exact, finite strip, finite difference, finite element, differential quadrature, and experimental …), method of determination of dynamic instability regions (Lyapunovian, perturbation, and Floquet’s methods), order of theory being applied (thin, thick, three-dimensional, nonlinear …), shell theory used (Sanders’, Love’s and Donnell’s), materials of structures (homogeneous, bimodulus, composite, FGM …), and the various complicating effects such as geometrical discontinuity, elastic support, added mass, fluid structure interactions, nonconservative loading and twisting, etc. The important effects on dynamic stability of structures under periodic loading have been identified and influences of various important parameters are discussed. A review of the subject for nonconservative systems in detail will be presented in Part 2. This review paper cites 156 references.
doi_str_mv 10.1115/1.2515580
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32632852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32632852</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-bddf349a6288f9efd00c19e1bd8b0acf8b4e152b7fdbfbba00a81b8b4691f0053</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqVw4MzFJyQOgbXTpE5vpfxVQgJROFvrZK2myk-x3Uq59R3gCXkSgspppdGnmdlh7FzAtRAiuRHXMhFJouCADWQ8ziIYwfiQDQAgjtIM4JideL8CEFKlyYCFN_KELl_yabHFJifPy4aHJfG7rsG6zPkioCmrMnT8lpa4LVvHW8tfKww9i03BF0uqKj_hIlPjn92XBEh-dt-v6AKfT_isbTy5LYZyS3zR-UC1P2VHFitPZ_93yD4e7t9nT9Hzy-N8Nn2OUCoIkSkKG48yTKVSNiNbAOQiI2EKZQBzq8yIRCLN2BbGGoMAqITp1TQTtm8RD9nl3nft2s8N-aDr0ud9W2yo3XgdyzSWKpE9eLUHc9d678jqtStrdJ0WoP921UL_79qzF3sWfU161W5c0_-g-9BUjeJfiOF1Ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32632852</pqid></control><display><type>article</type><title>Research Advances in the Dynamic Stability Behavior of Plates and Shells: 1987–2005—Part I: Conservative Systems</title><source>ASME Transactions Journals (Current)</source><creator>Sahu, S. K ; Datta, P. K</creator><creatorcontrib>Sahu, S. K ; Datta, P. K</creatorcontrib><description>This paper reviews most of the recent research done in the field of dynamic stability/dynamic instability/parametric excitation/parametric resonance characteristics of structures with special attention to parametric excitation of plate and shell structures. The solution of dynamic stability problems involves derivation of the equation of motion, discretization, and determination of dynamic instability regions of the structures. The purpose of this study is to review most of the recent research on dynamic stability in terms of the geometry (plates, cylindrical, spherical, and conical shells), type of loading (uniaxial uniform, patch, point loading …), boundary conditions (SSSS, SCSC, CCCC …), method of analysis (exact, finite strip, finite difference, finite element, differential quadrature, and experimental …), method of determination of dynamic instability regions (Lyapunovian, perturbation, and Floquet’s methods), order of theory being applied (thin, thick, three-dimensional, nonlinear …), shell theory used (Sanders’, Love’s and Donnell’s), materials of structures (homogeneous, bimodulus, composite, FGM …), and the various complicating effects such as geometrical discontinuity, elastic support, added mass, fluid structure interactions, nonconservative loading and twisting, etc. The important effects on dynamic stability of structures under periodic loading have been identified and influences of various important parameters are discussed. A review of the subject for nonconservative systems in detail will be presented in Part 2. This review paper cites 156 references.</description><identifier>ISSN: 0003-6900</identifier><identifier>EISSN: 2379-0407</identifier><identifier>DOI: 10.1115/1.2515580</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Applied mechanics reviews, 2007-03, Vol.60 (2), p.65-75</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-bddf349a6288f9efd00c19e1bd8b0acf8b4e152b7fdbfbba00a81b8b4691f0053</citedby><cites>FETCH-LOGICAL-a280t-bddf349a6288f9efd00c19e1bd8b0acf8b4e152b7fdbfbba00a81b8b4691f0053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38497</link.rule.ids></links><search><creatorcontrib>Sahu, S. K</creatorcontrib><creatorcontrib>Datta, P. K</creatorcontrib><title>Research Advances in the Dynamic Stability Behavior of Plates and Shells: 1987–2005—Part I: Conservative Systems</title><title>Applied mechanics reviews</title><addtitle>Appl. Mech. Rev</addtitle><description>This paper reviews most of the recent research done in the field of dynamic stability/dynamic instability/parametric excitation/parametric resonance characteristics of structures with special attention to parametric excitation of plate and shell structures. The solution of dynamic stability problems involves derivation of the equation of motion, discretization, and determination of dynamic instability regions of the structures. The purpose of this study is to review most of the recent research on dynamic stability in terms of the geometry (plates, cylindrical, spherical, and conical shells), type of loading (uniaxial uniform, patch, point loading …), boundary conditions (SSSS, SCSC, CCCC …), method of analysis (exact, finite strip, finite difference, finite element, differential quadrature, and experimental …), method of determination of dynamic instability regions (Lyapunovian, perturbation, and Floquet’s methods), order of theory being applied (thin, thick, three-dimensional, nonlinear …), shell theory used (Sanders’, Love’s and Donnell’s), materials of structures (homogeneous, bimodulus, composite, FGM …), and the various complicating effects such as geometrical discontinuity, elastic support, added mass, fluid structure interactions, nonconservative loading and twisting, etc. The important effects on dynamic stability of structures under periodic loading have been identified and influences of various important parameters are discussed. A review of the subject for nonconservative systems in detail will be presented in Part 2. This review paper cites 156 references.</description><issn>0003-6900</issn><issn>2379-0407</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotkM1OwzAQhC0EEqVw4MzFJyQOgbXTpE5vpfxVQgJROFvrZK2myk-x3Uq59R3gCXkSgspppdGnmdlh7FzAtRAiuRHXMhFJouCADWQ8ziIYwfiQDQAgjtIM4JideL8CEFKlyYCFN_KELl_yabHFJifPy4aHJfG7rsG6zPkioCmrMnT8lpa4LVvHW8tfKww9i03BF0uqKj_hIlPjn92XBEh-dt-v6AKfT_isbTy5LYZyS3zR-UC1P2VHFitPZ_93yD4e7t9nT9Hzy-N8Nn2OUCoIkSkKG48yTKVSNiNbAOQiI2EKZQBzq8yIRCLN2BbGGoMAqITp1TQTtm8RD9nl3nft2s8N-aDr0ud9W2yo3XgdyzSWKpE9eLUHc9d678jqtStrdJ0WoP921UL_79qzF3sWfU161W5c0_-g-9BUjeJfiOF1Ew</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Sahu, S. K</creator><creator>Datta, P. K</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20070301</creationdate><title>Research Advances in the Dynamic Stability Behavior of Plates and Shells: 1987–2005—Part I: Conservative Systems</title><author>Sahu, S. K ; Datta, P. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-bddf349a6288f9efd00c19e1bd8b0acf8b4e152b7fdbfbba00a81b8b4691f0053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahu, S. K</creatorcontrib><creatorcontrib>Datta, P. K</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied mechanics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahu, S. K</au><au>Datta, P. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research Advances in the Dynamic Stability Behavior of Plates and Shells: 1987–2005—Part I: Conservative Systems</atitle><jtitle>Applied mechanics reviews</jtitle><stitle>Appl. Mech. Rev</stitle><date>2007-03-01</date><risdate>2007</risdate><volume>60</volume><issue>2</issue><spage>65</spage><epage>75</epage><pages>65-75</pages><issn>0003-6900</issn><eissn>2379-0407</eissn><abstract>This paper reviews most of the recent research done in the field of dynamic stability/dynamic instability/parametric excitation/parametric resonance characteristics of structures with special attention to parametric excitation of plate and shell structures. The solution of dynamic stability problems involves derivation of the equation of motion, discretization, and determination of dynamic instability regions of the structures. The purpose of this study is to review most of the recent research on dynamic stability in terms of the geometry (plates, cylindrical, spherical, and conical shells), type of loading (uniaxial uniform, patch, point loading …), boundary conditions (SSSS, SCSC, CCCC …), method of analysis (exact, finite strip, finite difference, finite element, differential quadrature, and experimental …), method of determination of dynamic instability regions (Lyapunovian, perturbation, and Floquet’s methods), order of theory being applied (thin, thick, three-dimensional, nonlinear …), shell theory used (Sanders’, Love’s and Donnell’s), materials of structures (homogeneous, bimodulus, composite, FGM …), and the various complicating effects such as geometrical discontinuity, elastic support, added mass, fluid structure interactions, nonconservative loading and twisting, etc. The important effects on dynamic stability of structures under periodic loading have been identified and influences of various important parameters are discussed. A review of the subject for nonconservative systems in detail will be presented in Part 2. This review paper cites 156 references.</abstract><pub>ASME</pub><doi>10.1115/1.2515580</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6900
ispartof Applied mechanics reviews, 2007-03, Vol.60 (2), p.65-75
issn 0003-6900
2379-0407
language eng
recordid cdi_proquest_miscellaneous_32632852
source ASME Transactions Journals (Current)
title Research Advances in the Dynamic Stability Behavior of Plates and Shells: 1987–2005—Part I: Conservative Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20Advances%20in%20the%20Dynamic%20Stability%20Behavior%20of%20Plates%20and%20Shells:%201987%E2%80%932005%E2%80%94Part%20I:%20Conservative%20Systems&rft.jtitle=Applied%20mechanics%20reviews&rft.au=Sahu,%20S.%20K&rft.date=2007-03-01&rft.volume=60&rft.issue=2&rft.spage=65&rft.epage=75&rft.pages=65-75&rft.issn=0003-6900&rft.eissn=2379-0407&rft_id=info:doi/10.1115/1.2515580&rft_dat=%3Cproquest_cross%3E32632852%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32632852&rft_id=info:pmid/&rfr_iscdi=true