Orientation stability in equal channel angular extrusion. Part I: Face-centered cubic and body-centered cubic materials

Stability of crystallographic orientations is a key aspect in the characterization and understanding of texture evolution during plastic deformation. In this study, a rate-dependent crystal plasticity model was applied to investigate orientation stability during equal channel angular extrusion (ECAE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2008-03, Vol.56 (5), p.1018-1030
1. Verfasser: Li, Saiyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stability of crystallographic orientations is a key aspect in the characterization and understanding of texture evolution during plastic deformation. In this study, a rate-dependent crystal plasticity model was applied to investigate orientation stability during equal channel angular extrusion (ECAE) of face-centered cubic (fcc) and body-centered cubic (bcc) crystals. The stability of experimentally observed ideal orientations was examined according to lattice rotation fields computed at and around the orientations. It is shown that these ideal orientations are meta-stable under rate-sensitive conditions, and their stability generally increases with the decrease of strain rate sensitivity. The results also reveal a well-preserved duality in the lattice rotation and orientation stability between the two types of crystal structure. The stability results simulated at low strain rate sensitivities agree well with the experimental observations in one-pass ECAE of Al and Cu single crystals. In Part II of the paper, this analysis is extended to hexagonal materials.
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2007.11.001