Population balance model of heat transfer in gas-solid particulate systems
A population balance model is derived for heat transfer processes in gas-solid systems with intensive motion of particles in order to describe the temperature distribution of particulate phase. The model involves collisional particle-particle and particle-wall heat transfers, and continuous gas-part...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2008-04, Vol.51 (7-8), p.1633-1645 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1645 |
---|---|
container_issue | 7-8 |
container_start_page | 1633 |
container_title | International journal of heat and mass transfer |
container_volume | 51 |
creator | LAKATOS, B. G SÜLE, Z MIHILYKO, Cs |
description | A population balance model is derived for heat transfer processes in gas-solid systems with intensive motion of particles in order to describe the temperature distribution of particulate phase. The model involves collisional particle-particle and particle-wall heat transfers, and continuous gas-particle, gas-wall and wall-liquid environment heat transfer processes. Collisional heat transfers are characterised by collision frequencies and random heat exchange parameters with general probability distributions with support [0,1], describing the heat transfer efficiency between the colliding solid bodies. An infinite hierarchy of moment equations, describing the time evolution of moments of the temperature of particle population is derived from the population balance equation, which can be closed at any order of moments. The properties of the model and the effects of parameters are examined by numerical experiments using the second order moment equation model of a spatially homogeneous fluidized bed. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2007.07.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32559315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32559315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-5bf16526c9bc0761af176fea749269163d9b68a3c4baa3ca771a29db49bddc553</originalsourceid><addsrcrecordid>eNplkE1PwzAMhiMEEmPwH3IBcWlJmjZpbqCJT02CA5wjN02gVbuWuDvs39NogwuSZcvS68f2S8g1ZylnXN60adN-OZh6QJwCbNC7kGaMqTQGz4_IgpdKJxkv9TFZMMZVogVnp-QMsY0ty-WCvLwN47aDqRk2tIIONtbRfqhdRwdPI5_-wmmzoZ-ACQ5dU9MRwtTYOOko7nByPZ6TEw8duotDXZKPh_v31VOyfn18Xt2tEyuUmJKi8lwWmbS6skxJDp4r6R2oXGdScylqXckShM0rmDMoxSHTdZXrqq5tUYgludpzxzB8bx1Opm_Qum4-3g1bNCIrivnTKLzdC20YEIPzZgxND2FnODPRRNOa_yaaaKKJwfMZcXnYBWih87PGNvjHydjscVmU4gcopXt9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32559315</pqid></control><display><type>article</type><title>Population balance model of heat transfer in gas-solid particulate systems</title><source>Elsevier ScienceDirect Journals</source><creator>LAKATOS, B. G ; SÜLE, Z ; MIHILYKO, Cs</creator><creatorcontrib>LAKATOS, B. G ; SÜLE, Z ; MIHILYKO, Cs</creatorcontrib><description>A population balance model is derived for heat transfer processes in gas-solid systems with intensive motion of particles in order to describe the temperature distribution of particulate phase. The model involves collisional particle-particle and particle-wall heat transfers, and continuous gas-particle, gas-wall and wall-liquid environment heat transfer processes. Collisional heat transfers are characterised by collision frequencies and random heat exchange parameters with general probability distributions with support [0,1], describing the heat transfer efficiency between the colliding solid bodies. An infinite hierarchy of moment equations, describing the time evolution of moments of the temperature of particle population is derived from the population balance equation, which can be closed at any order of moments. The properties of the model and the effects of parameters are examined by numerical experiments using the second order moment equation model of a spatially homogeneous fluidized bed.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2007.07.014</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; Heat and mass transfer. Packings, plates</subject><ispartof>International journal of heat and mass transfer, 2008-04, Vol.51 (7-8), p.1633-1645</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-5bf16526c9bc0761af176fea749269163d9b68a3c4baa3ca771a29db49bddc553</citedby><cites>FETCH-LOGICAL-c373t-5bf16526c9bc0761af176fea749269163d9b68a3c4baa3ca771a29db49bddc553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20187858$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LAKATOS, B. G</creatorcontrib><creatorcontrib>SÜLE, Z</creatorcontrib><creatorcontrib>MIHILYKO, Cs</creatorcontrib><title>Population balance model of heat transfer in gas-solid particulate systems</title><title>International journal of heat and mass transfer</title><description>A population balance model is derived for heat transfer processes in gas-solid systems with intensive motion of particles in order to describe the temperature distribution of particulate phase. The model involves collisional particle-particle and particle-wall heat transfers, and continuous gas-particle, gas-wall and wall-liquid environment heat transfer processes. Collisional heat transfers are characterised by collision frequencies and random heat exchange parameters with general probability distributions with support [0,1], describing the heat transfer efficiency between the colliding solid bodies. An infinite hierarchy of moment equations, describing the time evolution of moments of the temperature of particle population is derived from the population balance equation, which can be closed at any order of moments. The properties of the model and the effects of parameters are examined by numerical experiments using the second order moment equation model of a spatially homogeneous fluidized bed.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Heat and mass transfer. Packings, plates</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNplkE1PwzAMhiMEEmPwH3IBcWlJmjZpbqCJT02CA5wjN02gVbuWuDvs39NogwuSZcvS68f2S8g1ZylnXN60adN-OZh6QJwCbNC7kGaMqTQGz4_IgpdKJxkv9TFZMMZVogVnp-QMsY0ty-WCvLwN47aDqRk2tIIONtbRfqhdRwdPI5_-wmmzoZ-ACQ5dU9MRwtTYOOko7nByPZ6TEw8duotDXZKPh_v31VOyfn18Xt2tEyuUmJKi8lwWmbS6skxJDp4r6R2oXGdScylqXckShM0rmDMoxSHTdZXrqq5tUYgludpzxzB8bx1Opm_Qum4-3g1bNCIrivnTKLzdC20YEIPzZgxND2FnODPRRNOa_yaaaKKJwfMZcXnYBWih87PGNvjHydjscVmU4gcopXt9</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>LAKATOS, B. G</creator><creator>SÜLE, Z</creator><creator>MIHILYKO, Cs</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20080401</creationdate><title>Population balance model of heat transfer in gas-solid particulate systems</title><author>LAKATOS, B. G ; SÜLE, Z ; MIHILYKO, Cs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-5bf16526c9bc0761af176fea749269163d9b68a3c4baa3ca771a29db49bddc553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Heat and mass transfer. Packings, plates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LAKATOS, B. G</creatorcontrib><creatorcontrib>SÜLE, Z</creatorcontrib><creatorcontrib>MIHILYKO, Cs</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LAKATOS, B. G</au><au>SÜLE, Z</au><au>MIHILYKO, Cs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population balance model of heat transfer in gas-solid particulate systems</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>51</volume><issue>7-8</issue><spage>1633</spage><epage>1645</epage><pages>1633-1645</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>A population balance model is derived for heat transfer processes in gas-solid systems with intensive motion of particles in order to describe the temperature distribution of particulate phase. The model involves collisional particle-particle and particle-wall heat transfers, and continuous gas-particle, gas-wall and wall-liquid environment heat transfer processes. Collisional heat transfers are characterised by collision frequencies and random heat exchange parameters with general probability distributions with support [0,1], describing the heat transfer efficiency between the colliding solid bodies. An infinite hierarchy of moment equations, describing the time evolution of moments of the temperature of particle population is derived from the population balance equation, which can be closed at any order of moments. The properties of the model and the effects of parameters are examined by numerical experiments using the second order moment equation model of a spatially homogeneous fluidized bed.</abstract><cop>Oxford</cop><pub>Elsevier</pub><doi>10.1016/j.ijheatmasstransfer.2007.07.014</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2008-04, Vol.51 (7-8), p.1633-1645 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_32559315 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Chemical engineering Exact sciences and technology Heat and mass transfer. Packings, plates |
title | Population balance model of heat transfer in gas-solid particulate systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20balance%20model%20of%20heat%20transfer%20in%20gas-solid%20particulate%20systems&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=LAKATOS,%20B.%20G&rft.date=2008-04-01&rft.volume=51&rft.issue=7-8&rft.spage=1633&rft.epage=1645&rft.pages=1633-1645&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2007.07.014&rft_dat=%3Cproquest_cross%3E32559315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32559315&rft_id=info:pmid/&rfr_iscdi=true |