Population balance model of heat transfer in gas-solid particulate systems

A population balance model is derived for heat transfer processes in gas-solid systems with intensive motion of particles in order to describe the temperature distribution of particulate phase. The model involves collisional particle-particle and particle-wall heat transfers, and continuous gas-part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2008-04, Vol.51 (7-8), p.1633-1645
Hauptverfasser: LAKATOS, B. G, SÜLE, Z, MIHILYKO, Cs
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1645
container_issue 7-8
container_start_page 1633
container_title International journal of heat and mass transfer
container_volume 51
creator LAKATOS, B. G
SÜLE, Z
MIHILYKO, Cs
description A population balance model is derived for heat transfer processes in gas-solid systems with intensive motion of particles in order to describe the temperature distribution of particulate phase. The model involves collisional particle-particle and particle-wall heat transfers, and continuous gas-particle, gas-wall and wall-liquid environment heat transfer processes. Collisional heat transfers are characterised by collision frequencies and random heat exchange parameters with general probability distributions with support [0,1], describing the heat transfer efficiency between the colliding solid bodies. An infinite hierarchy of moment equations, describing the time evolution of moments of the temperature of particle population is derived from the population balance equation, which can be closed at any order of moments. The properties of the model and the effects of parameters are examined by numerical experiments using the second order moment equation model of a spatially homogeneous fluidized bed.
doi_str_mv 10.1016/j.ijheatmasstransfer.2007.07.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32559315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32559315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-5bf16526c9bc0761af176fea749269163d9b68a3c4baa3ca771a29db49bddc553</originalsourceid><addsrcrecordid>eNplkE1PwzAMhiMEEmPwH3IBcWlJmjZpbqCJT02CA5wjN02gVbuWuDvs39NogwuSZcvS68f2S8g1ZylnXN60adN-OZh6QJwCbNC7kGaMqTQGz4_IgpdKJxkv9TFZMMZVogVnp-QMsY0ty-WCvLwN47aDqRk2tIIONtbRfqhdRwdPI5_-wmmzoZ-ACQ5dU9MRwtTYOOko7nByPZ6TEw8duotDXZKPh_v31VOyfn18Xt2tEyuUmJKi8lwWmbS6skxJDp4r6R2oXGdScylqXckShM0rmDMoxSHTdZXrqq5tUYgludpzxzB8bx1Opm_Qum4-3g1bNCIrivnTKLzdC20YEIPzZgxND2FnODPRRNOa_yaaaKKJwfMZcXnYBWih87PGNvjHydjscVmU4gcopXt9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32559315</pqid></control><display><type>article</type><title>Population balance model of heat transfer in gas-solid particulate systems</title><source>Elsevier ScienceDirect Journals</source><creator>LAKATOS, B. G ; SÜLE, Z ; MIHILYKO, Cs</creator><creatorcontrib>LAKATOS, B. G ; SÜLE, Z ; MIHILYKO, Cs</creatorcontrib><description>A population balance model is derived for heat transfer processes in gas-solid systems with intensive motion of particles in order to describe the temperature distribution of particulate phase. The model involves collisional particle-particle and particle-wall heat transfers, and continuous gas-particle, gas-wall and wall-liquid environment heat transfer processes. Collisional heat transfers are characterised by collision frequencies and random heat exchange parameters with general probability distributions with support [0,1], describing the heat transfer efficiency between the colliding solid bodies. An infinite hierarchy of moment equations, describing the time evolution of moments of the temperature of particle population is derived from the population balance equation, which can be closed at any order of moments. The properties of the model and the effects of parameters are examined by numerical experiments using the second order moment equation model of a spatially homogeneous fluidized bed.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2007.07.014</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; Heat and mass transfer. Packings, plates</subject><ispartof>International journal of heat and mass transfer, 2008-04, Vol.51 (7-8), p.1633-1645</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-5bf16526c9bc0761af176fea749269163d9b68a3c4baa3ca771a29db49bddc553</citedby><cites>FETCH-LOGICAL-c373t-5bf16526c9bc0761af176fea749269163d9b68a3c4baa3ca771a29db49bddc553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20187858$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LAKATOS, B. G</creatorcontrib><creatorcontrib>SÜLE, Z</creatorcontrib><creatorcontrib>MIHILYKO, Cs</creatorcontrib><title>Population balance model of heat transfer in gas-solid particulate systems</title><title>International journal of heat and mass transfer</title><description>A population balance model is derived for heat transfer processes in gas-solid systems with intensive motion of particles in order to describe the temperature distribution of particulate phase. The model involves collisional particle-particle and particle-wall heat transfers, and continuous gas-particle, gas-wall and wall-liquid environment heat transfer processes. Collisional heat transfers are characterised by collision frequencies and random heat exchange parameters with general probability distributions with support [0,1], describing the heat transfer efficiency between the colliding solid bodies. An infinite hierarchy of moment equations, describing the time evolution of moments of the temperature of particle population is derived from the population balance equation, which can be closed at any order of moments. The properties of the model and the effects of parameters are examined by numerical experiments using the second order moment equation model of a spatially homogeneous fluidized bed.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Heat and mass transfer. Packings, plates</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNplkE1PwzAMhiMEEmPwH3IBcWlJmjZpbqCJT02CA5wjN02gVbuWuDvs39NogwuSZcvS68f2S8g1ZylnXN60adN-OZh6QJwCbNC7kGaMqTQGz4_IgpdKJxkv9TFZMMZVogVnp-QMsY0ty-WCvLwN47aDqRk2tIIONtbRfqhdRwdPI5_-wmmzoZ-ACQ5dU9MRwtTYOOko7nByPZ6TEw8duotDXZKPh_v31VOyfn18Xt2tEyuUmJKi8lwWmbS6skxJDp4r6R2oXGdScylqXckShM0rmDMoxSHTdZXrqq5tUYgludpzxzB8bx1Opm_Qum4-3g1bNCIrivnTKLzdC20YEIPzZgxND2FnODPRRNOa_yaaaKKJwfMZcXnYBWih87PGNvjHydjscVmU4gcopXt9</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>LAKATOS, B. G</creator><creator>SÜLE, Z</creator><creator>MIHILYKO, Cs</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20080401</creationdate><title>Population balance model of heat transfer in gas-solid particulate systems</title><author>LAKATOS, B. G ; SÜLE, Z ; MIHILYKO, Cs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-5bf16526c9bc0761af176fea749269163d9b68a3c4baa3ca771a29db49bddc553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Heat and mass transfer. Packings, plates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LAKATOS, B. G</creatorcontrib><creatorcontrib>SÜLE, Z</creatorcontrib><creatorcontrib>MIHILYKO, Cs</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LAKATOS, B. G</au><au>SÜLE, Z</au><au>MIHILYKO, Cs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population balance model of heat transfer in gas-solid particulate systems</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>51</volume><issue>7-8</issue><spage>1633</spage><epage>1645</epage><pages>1633-1645</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>A population balance model is derived for heat transfer processes in gas-solid systems with intensive motion of particles in order to describe the temperature distribution of particulate phase. The model involves collisional particle-particle and particle-wall heat transfers, and continuous gas-particle, gas-wall and wall-liquid environment heat transfer processes. Collisional heat transfers are characterised by collision frequencies and random heat exchange parameters with general probability distributions with support [0,1], describing the heat transfer efficiency between the colliding solid bodies. An infinite hierarchy of moment equations, describing the time evolution of moments of the temperature of particle population is derived from the population balance equation, which can be closed at any order of moments. The properties of the model and the effects of parameters are examined by numerical experiments using the second order moment equation model of a spatially homogeneous fluidized bed.</abstract><cop>Oxford</cop><pub>Elsevier</pub><doi>10.1016/j.ijheatmasstransfer.2007.07.014</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2008-04, Vol.51 (7-8), p.1633-1645
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_32559315
source Elsevier ScienceDirect Journals
subjects Applied sciences
Chemical engineering
Exact sciences and technology
Heat and mass transfer. Packings, plates
title Population balance model of heat transfer in gas-solid particulate systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20balance%20model%20of%20heat%20transfer%20in%20gas-solid%20particulate%20systems&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=LAKATOS,%20B.%20G&rft.date=2008-04-01&rft.volume=51&rft.issue=7-8&rft.spage=1633&rft.epage=1645&rft.pages=1633-1645&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2007.07.014&rft_dat=%3Cproquest_cross%3E32559315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32559315&rft_id=info:pmid/&rfr_iscdi=true