Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics
Liquid polycarbosilane (LPCS) with a highly branched structure was characterized by fourier-transform infrared spectrometry (FT-IR) and ¹H, ¹³C, ²⁹Si nuclear magnetic resonance spectrometry (NMR). The LPCS was then cured and pyrolysized up to 1,600 °C under flowing argon. The structural evolution pr...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2008-04, Vol.43 (8), p.2806-2811 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2811 |
---|---|
container_issue | 8 |
container_start_page | 2806 |
container_title | Journal of materials science |
container_volume | 43 |
creator | Li, Houbu Zhang, Litong Cheng, Laifei Wang, Yiguang Yu, Zhaoju Huang, Muhe Tu, Huibin Xia, Haiping |
description | Liquid polycarbosilane (LPCS) with a highly branched structure was characterized by fourier-transform infrared spectrometry (FT-IR) and ¹H, ¹³C, ²⁹Si nuclear magnetic resonance spectrometry (NMR). The LPCS was then cured and pyrolysized up to 1,600 °C under flowing argon. The structural evolution process was studied by thermogravimetric analysis and differential scanning calorimetry (TG-DSC), FT-IR, and X-ray diffraction (XRD). Hydrosilylation, dehydrocoupling, and polymerization cross-linking reactions between Si–H and C=C groups occurred at low temperatures, which mainly accounted for the high ceramic yield (70%) up to 1,400 °C. The organic groups gradually decomposed and the structure rearranged at high temperatures. The FT-IR analysis revealed that Si–CH₂–Si chains, the backbone of original polymer, can be retained up to 1,200 °C. At temperatures higher than 1,200 °C, the Si–CH₂–Si chains broke down and crystalline SiC began to form. The final crystalline products were β-SiC and a small amount of carbon. |
doi_str_mv | 10.1007/s10853-008-2539-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32551037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32551037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-d5d8af6bb077824977daaab17f58cd1993d1aff784a94ea612dacc9bfdafa8c33</originalsourceid><addsrcrecordid>eNqNksuKFDEUhoMo2I4-gCsDoswmmkvlUktpdBQGFMZZh1O5dGeorvQk0wO98x18Q5_EFNUouBhcZZHv_zjJfxB6yeg7Rql-Xxk1UhBKDeFS9MQ8QismtSCdoeIxWlHKOeGdYk_Rs1pvKKVSc7ZC9lsej7tQfv346UKBXXLY5ek-lJryhHPEgLdpsx2PeCgwuW3weEy3h-TxvgUdlCHXNMIUcMwFX6U1GaA26CSrz9GTCGMNL07nGbr-9PH7-jO5_HrxZf3hkrhO6TvipTcQ1TBQrQ3veq09AAxMR2mcZ30vPIMYtemg7wIoxj041w_RQwTjhDhDbxfvvuTbQ6h3dpeqC-M8Wj5UK7iUjArdwPMHwfaPnPVGcPafqJSqa-jrf9CbfChTe7HlXPZKdozxRrGFciXXWkK0-5J2UI5NZeca7VKjbTXauUZrWubNyQzVwRjnFlL9E-SUS6PUzPGFq-1q2oTyd4KH5K-WUIRsYVOa-PqKU6bovC-y7c9vUs63Iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259654112</pqid></control><display><type>article</type><title>Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics</title><source>Springer Nature - Complete Springer Journals</source><creator>Li, Houbu ; Zhang, Litong ; Cheng, Laifei ; Wang, Yiguang ; Yu, Zhaoju ; Huang, Muhe ; Tu, Huibin ; Xia, Haiping</creator><creatorcontrib>Li, Houbu ; Zhang, Litong ; Cheng, Laifei ; Wang, Yiguang ; Yu, Zhaoju ; Huang, Muhe ; Tu, Huibin ; Xia, Haiping</creatorcontrib><description>Liquid polycarbosilane (LPCS) with a highly branched structure was characterized by fourier-transform infrared spectrometry (FT-IR) and ¹H, ¹³C, ²⁹Si nuclear magnetic resonance spectrometry (NMR). The LPCS was then cured and pyrolysized up to 1,600 °C under flowing argon. The structural evolution process was studied by thermogravimetric analysis and differential scanning calorimetry (TG-DSC), FT-IR, and X-ray diffraction (XRD). Hydrosilylation, dehydrocoupling, and polymerization cross-linking reactions between Si–H and C=C groups occurred at low temperatures, which mainly accounted for the high ceramic yield (70%) up to 1,400 °C. The organic groups gradually decomposed and the structure rearranged at high temperatures. The FT-IR analysis revealed that Si–CH₂–Si chains, the backbone of original polymer, can be retained up to 1,200 °C. At temperatures higher than 1,200 °C, the Si–CH₂–Si chains broke down and crystalline SiC began to form. The final crystalline products were β-SiC and a small amount of carbon.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-008-2539-8</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Argon ; argon (noble gases) ; Branched ; Building materials. Ceramics. Glasses ; carbon ; Ceramic industries ; Ceramics ; Chains (polymeric) ; Characterization and Evaluation of Materials ; Chemical industry and chemicals ; Chemistry and Materials Science ; Classical Mechanics ; Crosslinking ; Crystal structure ; Crystallinity ; Crystallography and Scattering Methods ; Crystals ; Differential scanning calorimetry ; Exact sciences and technology ; Fourier transform infrared spectroscopy ; Fourier transforms ; Hydrosilylation ; Infrared analysis ; Infrared spectroscopy ; Liquids ; Materials Science ; NMR ; Nuclear magnetic resonance ; nuclear magnetic resonance spectroscopy ; Polycarbosilanes ; Polymer Sciences ; polymerization ; polymers ; Scientific imaging ; Silicon carbide ; Solid Mechanics ; Spectrometry ; Spectroscopy ; stable isotopes ; Structural ceramics ; Technical ceramics ; temperature ; Thermogravimetric analysis ; thermogravimetry ; X-ray diffraction</subject><ispartof>Journal of materials science, 2008-04, Vol.43 (8), p.2806-2811</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>2008 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2008). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-d5d8af6bb077824977daaab17f58cd1993d1aff784a94ea612dacc9bfdafa8c33</citedby><cites>FETCH-LOGICAL-c467t-d5d8af6bb077824977daaab17f58cd1993d1aff784a94ea612dacc9bfdafa8c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-008-2539-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-008-2539-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20258668$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Houbu</creatorcontrib><creatorcontrib>Zhang, Litong</creatorcontrib><creatorcontrib>Cheng, Laifei</creatorcontrib><creatorcontrib>Wang, Yiguang</creatorcontrib><creatorcontrib>Yu, Zhaoju</creatorcontrib><creatorcontrib>Huang, Muhe</creatorcontrib><creatorcontrib>Tu, Huibin</creatorcontrib><creatorcontrib>Xia, Haiping</creatorcontrib><title>Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Liquid polycarbosilane (LPCS) with a highly branched structure was characterized by fourier-transform infrared spectrometry (FT-IR) and ¹H, ¹³C, ²⁹Si nuclear magnetic resonance spectrometry (NMR). The LPCS was then cured and pyrolysized up to 1,600 °C under flowing argon. The structural evolution process was studied by thermogravimetric analysis and differential scanning calorimetry (TG-DSC), FT-IR, and X-ray diffraction (XRD). Hydrosilylation, dehydrocoupling, and polymerization cross-linking reactions between Si–H and C=C groups occurred at low temperatures, which mainly accounted for the high ceramic yield (70%) up to 1,400 °C. The organic groups gradually decomposed and the structure rearranged at high temperatures. The FT-IR analysis revealed that Si–CH₂–Si chains, the backbone of original polymer, can be retained up to 1,200 °C. At temperatures higher than 1,200 °C, the Si–CH₂–Si chains broke down and crystalline SiC began to form. The final crystalline products were β-SiC and a small amount of carbon.</description><subject>Applied sciences</subject><subject>Argon</subject><subject>argon (noble gases)</subject><subject>Branched</subject><subject>Building materials. Ceramics. Glasses</subject><subject>carbon</subject><subject>Ceramic industries</subject><subject>Ceramics</subject><subject>Chains (polymeric)</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical industry and chemicals</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crosslinking</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallography and Scattering Methods</subject><subject>Crystals</subject><subject>Differential scanning calorimetry</subject><subject>Exact sciences and technology</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Hydrosilylation</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Liquids</subject><subject>Materials Science</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Polycarbosilanes</subject><subject>Polymer Sciences</subject><subject>polymerization</subject><subject>polymers</subject><subject>Scientific imaging</subject><subject>Silicon carbide</subject><subject>Solid Mechanics</subject><subject>Spectrometry</subject><subject>Spectroscopy</subject><subject>stable isotopes</subject><subject>Structural ceramics</subject><subject>Technical ceramics</subject><subject>temperature</subject><subject>Thermogravimetric analysis</subject><subject>thermogravimetry</subject><subject>X-ray diffraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNksuKFDEUhoMo2I4-gCsDoswmmkvlUktpdBQGFMZZh1O5dGeorvQk0wO98x18Q5_EFNUouBhcZZHv_zjJfxB6yeg7Rql-Xxk1UhBKDeFS9MQ8QismtSCdoeIxWlHKOeGdYk_Rs1pvKKVSc7ZC9lsej7tQfv346UKBXXLY5ek-lJryhHPEgLdpsx2PeCgwuW3weEy3h-TxvgUdlCHXNMIUcMwFX6U1GaA26CSrz9GTCGMNL07nGbr-9PH7-jO5_HrxZf3hkrhO6TvipTcQ1TBQrQ3veq09AAxMR2mcZ30vPIMYtemg7wIoxj041w_RQwTjhDhDbxfvvuTbQ6h3dpeqC-M8Wj5UK7iUjArdwPMHwfaPnPVGcPafqJSqa-jrf9CbfChTe7HlXPZKdozxRrGFciXXWkK0-5J2UI5NZeca7VKjbTXauUZrWubNyQzVwRjnFlL9E-SUS6PUzPGFq-1q2oTyd4KH5K-WUIRsYVOa-PqKU6bovC-y7c9vUs63Iw</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Li, Houbu</creator><creator>Zhang, Litong</creator><creator>Cheng, Laifei</creator><creator>Wang, Yiguang</creator><creator>Yu, Zhaoju</creator><creator>Huang, Muhe</creator><creator>Tu, Huibin</creator><creator>Xia, Haiping</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080401</creationdate><title>Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics</title><author>Li, Houbu ; Zhang, Litong ; Cheng, Laifei ; Wang, Yiguang ; Yu, Zhaoju ; Huang, Muhe ; Tu, Huibin ; Xia, Haiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-d5d8af6bb077824977daaab17f58cd1993d1aff784a94ea612dacc9bfdafa8c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Argon</topic><topic>argon (noble gases)</topic><topic>Branched</topic><topic>Building materials. Ceramics. Glasses</topic><topic>carbon</topic><topic>Ceramic industries</topic><topic>Ceramics</topic><topic>Chains (polymeric)</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical industry and chemicals</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crosslinking</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallography and Scattering Methods</topic><topic>Crystals</topic><topic>Differential scanning calorimetry</topic><topic>Exact sciences and technology</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Hydrosilylation</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Liquids</topic><topic>Materials Science</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Polycarbosilanes</topic><topic>Polymer Sciences</topic><topic>polymerization</topic><topic>polymers</topic><topic>Scientific imaging</topic><topic>Silicon carbide</topic><topic>Solid Mechanics</topic><topic>Spectrometry</topic><topic>Spectroscopy</topic><topic>stable isotopes</topic><topic>Structural ceramics</topic><topic>Technical ceramics</topic><topic>temperature</topic><topic>Thermogravimetric analysis</topic><topic>thermogravimetry</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Houbu</creatorcontrib><creatorcontrib>Zhang, Litong</creatorcontrib><creatorcontrib>Cheng, Laifei</creatorcontrib><creatorcontrib>Wang, Yiguang</creatorcontrib><creatorcontrib>Yu, Zhaoju</creatorcontrib><creatorcontrib>Huang, Muhe</creatorcontrib><creatorcontrib>Tu, Huibin</creatorcontrib><creatorcontrib>Xia, Haiping</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Houbu</au><au>Zhang, Litong</au><au>Cheng, Laifei</au><au>Wang, Yiguang</au><au>Yu, Zhaoju</au><au>Huang, Muhe</au><au>Tu, Huibin</au><au>Xia, Haiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>43</volume><issue>8</issue><spage>2806</spage><epage>2811</epage><pages>2806-2811</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>Liquid polycarbosilane (LPCS) with a highly branched structure was characterized by fourier-transform infrared spectrometry (FT-IR) and ¹H, ¹³C, ²⁹Si nuclear magnetic resonance spectrometry (NMR). The LPCS was then cured and pyrolysized up to 1,600 °C under flowing argon. The structural evolution process was studied by thermogravimetric analysis and differential scanning calorimetry (TG-DSC), FT-IR, and X-ray diffraction (XRD). Hydrosilylation, dehydrocoupling, and polymerization cross-linking reactions between Si–H and C=C groups occurred at low temperatures, which mainly accounted for the high ceramic yield (70%) up to 1,400 °C. The organic groups gradually decomposed and the structure rearranged at high temperatures. The FT-IR analysis revealed that Si–CH₂–Si chains, the backbone of original polymer, can be retained up to 1,200 °C. At temperatures higher than 1,200 °C, the Si–CH₂–Si chains broke down and crystalline SiC began to form. The final crystalline products were β-SiC and a small amount of carbon.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-008-2539-8</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2008-04, Vol.43 (8), p.2806-2811 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_32551037 |
source | Springer Nature - Complete Springer Journals |
subjects | Applied sciences Argon argon (noble gases) Branched Building materials. Ceramics. Glasses carbon Ceramic industries Ceramics Chains (polymeric) Characterization and Evaluation of Materials Chemical industry and chemicals Chemistry and Materials Science Classical Mechanics Crosslinking Crystal structure Crystallinity Crystallography and Scattering Methods Crystals Differential scanning calorimetry Exact sciences and technology Fourier transform infrared spectroscopy Fourier transforms Hydrosilylation Infrared analysis Infrared spectroscopy Liquids Materials Science NMR Nuclear magnetic resonance nuclear magnetic resonance spectroscopy Polycarbosilanes Polymer Sciences polymerization polymers Scientific imaging Silicon carbide Solid Mechanics Spectrometry Spectroscopy stable isotopes Structural ceramics Technical ceramics temperature Thermogravimetric analysis thermogravimetry X-ray diffraction |
title | Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer%E2%80%93ceramic%20conversion%20of%20a%20highly%20branched%20liquid%20polycarbosilane%20for%20SiC-based%20ceramics&rft.jtitle=Journal%20of%20materials%20science&rft.au=Li,%20Houbu&rft.date=2008-04-01&rft.volume=43&rft.issue=8&rft.spage=2806&rft.epage=2811&rft.pages=2806-2811&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-008-2539-8&rft_dat=%3Cproquest_cross%3E32551037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259654112&rft_id=info:pmid/&rfr_iscdi=true |