Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics

Liquid polycarbosilane (LPCS) with a highly branched structure was characterized by fourier-transform infrared spectrometry (FT-IR) and ¹H, ¹³C, ²⁹Si nuclear magnetic resonance spectrometry (NMR). The LPCS was then cured and pyrolysized up to 1,600 °C under flowing argon. The structural evolution pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2008-04, Vol.43 (8), p.2806-2811
Hauptverfasser: Li, Houbu, Zhang, Litong, Cheng, Laifei, Wang, Yiguang, Yu, Zhaoju, Huang, Muhe, Tu, Huibin, Xia, Haiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2811
container_issue 8
container_start_page 2806
container_title Journal of materials science
container_volume 43
creator Li, Houbu
Zhang, Litong
Cheng, Laifei
Wang, Yiguang
Yu, Zhaoju
Huang, Muhe
Tu, Huibin
Xia, Haiping
description Liquid polycarbosilane (LPCS) with a highly branched structure was characterized by fourier-transform infrared spectrometry (FT-IR) and ¹H, ¹³C, ²⁹Si nuclear magnetic resonance spectrometry (NMR). The LPCS was then cured and pyrolysized up to 1,600 °C under flowing argon. The structural evolution process was studied by thermogravimetric analysis and differential scanning calorimetry (TG-DSC), FT-IR, and X-ray diffraction (XRD). Hydrosilylation, dehydrocoupling, and polymerization cross-linking reactions between Si–H and C=C groups occurred at low temperatures, which mainly accounted for the high ceramic yield (70%) up to 1,400 °C. The organic groups gradually decomposed and the structure rearranged at high temperatures. The FT-IR analysis revealed that Si–CH₂–Si chains, the backbone of original polymer, can be retained up to 1,200 °C. At temperatures higher than 1,200 °C, the Si–CH₂–Si chains broke down and crystalline SiC began to form. The final crystalline products were β-SiC and a small amount of carbon.
doi_str_mv 10.1007/s10853-008-2539-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32551037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32551037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-d5d8af6bb077824977daaab17f58cd1993d1aff784a94ea612dacc9bfdafa8c33</originalsourceid><addsrcrecordid>eNqNksuKFDEUhoMo2I4-gCsDoswmmkvlUktpdBQGFMZZh1O5dGeorvQk0wO98x18Q5_EFNUouBhcZZHv_zjJfxB6yeg7Rql-Xxk1UhBKDeFS9MQ8QismtSCdoeIxWlHKOeGdYk_Rs1pvKKVSc7ZC9lsej7tQfv346UKBXXLY5ek-lJryhHPEgLdpsx2PeCgwuW3weEy3h-TxvgUdlCHXNMIUcMwFX6U1GaA26CSrz9GTCGMNL07nGbr-9PH7-jO5_HrxZf3hkrhO6TvipTcQ1TBQrQ3veq09AAxMR2mcZ30vPIMYtemg7wIoxj041w_RQwTjhDhDbxfvvuTbQ6h3dpeqC-M8Wj5UK7iUjArdwPMHwfaPnPVGcPafqJSqa-jrf9CbfChTe7HlXPZKdozxRrGFciXXWkK0-5J2UI5NZeca7VKjbTXauUZrWubNyQzVwRjnFlL9E-SUS6PUzPGFq-1q2oTyd4KH5K-WUIRsYVOa-PqKU6bovC-y7c9vUs63Iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259654112</pqid></control><display><type>article</type><title>Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics</title><source>Springer Nature - Complete Springer Journals</source><creator>Li, Houbu ; Zhang, Litong ; Cheng, Laifei ; Wang, Yiguang ; Yu, Zhaoju ; Huang, Muhe ; Tu, Huibin ; Xia, Haiping</creator><creatorcontrib>Li, Houbu ; Zhang, Litong ; Cheng, Laifei ; Wang, Yiguang ; Yu, Zhaoju ; Huang, Muhe ; Tu, Huibin ; Xia, Haiping</creatorcontrib><description>Liquid polycarbosilane (LPCS) with a highly branched structure was characterized by fourier-transform infrared spectrometry (FT-IR) and ¹H, ¹³C, ²⁹Si nuclear magnetic resonance spectrometry (NMR). The LPCS was then cured and pyrolysized up to 1,600 °C under flowing argon. The structural evolution process was studied by thermogravimetric analysis and differential scanning calorimetry (TG-DSC), FT-IR, and X-ray diffraction (XRD). Hydrosilylation, dehydrocoupling, and polymerization cross-linking reactions between Si–H and C=C groups occurred at low temperatures, which mainly accounted for the high ceramic yield (70%) up to 1,400 °C. The organic groups gradually decomposed and the structure rearranged at high temperatures. The FT-IR analysis revealed that Si–CH₂–Si chains, the backbone of original polymer, can be retained up to 1,200 °C. At temperatures higher than 1,200 °C, the Si–CH₂–Si chains broke down and crystalline SiC began to form. The final crystalline products were β-SiC and a small amount of carbon.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-008-2539-8</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Argon ; argon (noble gases) ; Branched ; Building materials. Ceramics. Glasses ; carbon ; Ceramic industries ; Ceramics ; Chains (polymeric) ; Characterization and Evaluation of Materials ; Chemical industry and chemicals ; Chemistry and Materials Science ; Classical Mechanics ; Crosslinking ; Crystal structure ; Crystallinity ; Crystallography and Scattering Methods ; Crystals ; Differential scanning calorimetry ; Exact sciences and technology ; Fourier transform infrared spectroscopy ; Fourier transforms ; Hydrosilylation ; Infrared analysis ; Infrared spectroscopy ; Liquids ; Materials Science ; NMR ; Nuclear magnetic resonance ; nuclear magnetic resonance spectroscopy ; Polycarbosilanes ; Polymer Sciences ; polymerization ; polymers ; Scientific imaging ; Silicon carbide ; Solid Mechanics ; Spectrometry ; Spectroscopy ; stable isotopes ; Structural ceramics ; Technical ceramics ; temperature ; Thermogravimetric analysis ; thermogravimetry ; X-ray diffraction</subject><ispartof>Journal of materials science, 2008-04, Vol.43 (8), p.2806-2811</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>2008 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2008). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-d5d8af6bb077824977daaab17f58cd1993d1aff784a94ea612dacc9bfdafa8c33</citedby><cites>FETCH-LOGICAL-c467t-d5d8af6bb077824977daaab17f58cd1993d1aff784a94ea612dacc9bfdafa8c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-008-2539-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-008-2539-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20258668$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Houbu</creatorcontrib><creatorcontrib>Zhang, Litong</creatorcontrib><creatorcontrib>Cheng, Laifei</creatorcontrib><creatorcontrib>Wang, Yiguang</creatorcontrib><creatorcontrib>Yu, Zhaoju</creatorcontrib><creatorcontrib>Huang, Muhe</creatorcontrib><creatorcontrib>Tu, Huibin</creatorcontrib><creatorcontrib>Xia, Haiping</creatorcontrib><title>Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Liquid polycarbosilane (LPCS) with a highly branched structure was characterized by fourier-transform infrared spectrometry (FT-IR) and ¹H, ¹³C, ²⁹Si nuclear magnetic resonance spectrometry (NMR). The LPCS was then cured and pyrolysized up to 1,600 °C under flowing argon. The structural evolution process was studied by thermogravimetric analysis and differential scanning calorimetry (TG-DSC), FT-IR, and X-ray diffraction (XRD). Hydrosilylation, dehydrocoupling, and polymerization cross-linking reactions between Si–H and C=C groups occurred at low temperatures, which mainly accounted for the high ceramic yield (70%) up to 1,400 °C. The organic groups gradually decomposed and the structure rearranged at high temperatures. The FT-IR analysis revealed that Si–CH₂–Si chains, the backbone of original polymer, can be retained up to 1,200 °C. At temperatures higher than 1,200 °C, the Si–CH₂–Si chains broke down and crystalline SiC began to form. The final crystalline products were β-SiC and a small amount of carbon.</description><subject>Applied sciences</subject><subject>Argon</subject><subject>argon (noble gases)</subject><subject>Branched</subject><subject>Building materials. Ceramics. Glasses</subject><subject>carbon</subject><subject>Ceramic industries</subject><subject>Ceramics</subject><subject>Chains (polymeric)</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical industry and chemicals</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crosslinking</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallography and Scattering Methods</subject><subject>Crystals</subject><subject>Differential scanning calorimetry</subject><subject>Exact sciences and technology</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Hydrosilylation</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Liquids</subject><subject>Materials Science</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Polycarbosilanes</subject><subject>Polymer Sciences</subject><subject>polymerization</subject><subject>polymers</subject><subject>Scientific imaging</subject><subject>Silicon carbide</subject><subject>Solid Mechanics</subject><subject>Spectrometry</subject><subject>Spectroscopy</subject><subject>stable isotopes</subject><subject>Structural ceramics</subject><subject>Technical ceramics</subject><subject>temperature</subject><subject>Thermogravimetric analysis</subject><subject>thermogravimetry</subject><subject>X-ray diffraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNksuKFDEUhoMo2I4-gCsDoswmmkvlUktpdBQGFMZZh1O5dGeorvQk0wO98x18Q5_EFNUouBhcZZHv_zjJfxB6yeg7Rql-Xxk1UhBKDeFS9MQ8QismtSCdoeIxWlHKOeGdYk_Rs1pvKKVSc7ZC9lsej7tQfv346UKBXXLY5ek-lJryhHPEgLdpsx2PeCgwuW3weEy3h-TxvgUdlCHXNMIUcMwFX6U1GaA26CSrz9GTCGMNL07nGbr-9PH7-jO5_HrxZf3hkrhO6TvipTcQ1TBQrQ3veq09AAxMR2mcZ30vPIMYtemg7wIoxj041w_RQwTjhDhDbxfvvuTbQ6h3dpeqC-M8Wj5UK7iUjArdwPMHwfaPnPVGcPafqJSqa-jrf9CbfChTe7HlXPZKdozxRrGFciXXWkK0-5J2UI5NZeca7VKjbTXauUZrWubNyQzVwRjnFlL9E-SUS6PUzPGFq-1q2oTyd4KH5K-WUIRsYVOa-PqKU6bovC-y7c9vUs63Iw</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Li, Houbu</creator><creator>Zhang, Litong</creator><creator>Cheng, Laifei</creator><creator>Wang, Yiguang</creator><creator>Yu, Zhaoju</creator><creator>Huang, Muhe</creator><creator>Tu, Huibin</creator><creator>Xia, Haiping</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080401</creationdate><title>Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics</title><author>Li, Houbu ; Zhang, Litong ; Cheng, Laifei ; Wang, Yiguang ; Yu, Zhaoju ; Huang, Muhe ; Tu, Huibin ; Xia, Haiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-d5d8af6bb077824977daaab17f58cd1993d1aff784a94ea612dacc9bfdafa8c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Argon</topic><topic>argon (noble gases)</topic><topic>Branched</topic><topic>Building materials. Ceramics. Glasses</topic><topic>carbon</topic><topic>Ceramic industries</topic><topic>Ceramics</topic><topic>Chains (polymeric)</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical industry and chemicals</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crosslinking</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallography and Scattering Methods</topic><topic>Crystals</topic><topic>Differential scanning calorimetry</topic><topic>Exact sciences and technology</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Hydrosilylation</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Liquids</topic><topic>Materials Science</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Polycarbosilanes</topic><topic>Polymer Sciences</topic><topic>polymerization</topic><topic>polymers</topic><topic>Scientific imaging</topic><topic>Silicon carbide</topic><topic>Solid Mechanics</topic><topic>Spectrometry</topic><topic>Spectroscopy</topic><topic>stable isotopes</topic><topic>Structural ceramics</topic><topic>Technical ceramics</topic><topic>temperature</topic><topic>Thermogravimetric analysis</topic><topic>thermogravimetry</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Houbu</creatorcontrib><creatorcontrib>Zhang, Litong</creatorcontrib><creatorcontrib>Cheng, Laifei</creatorcontrib><creatorcontrib>Wang, Yiguang</creatorcontrib><creatorcontrib>Yu, Zhaoju</creatorcontrib><creatorcontrib>Huang, Muhe</creatorcontrib><creatorcontrib>Tu, Huibin</creatorcontrib><creatorcontrib>Xia, Haiping</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Houbu</au><au>Zhang, Litong</au><au>Cheng, Laifei</au><au>Wang, Yiguang</au><au>Yu, Zhaoju</au><au>Huang, Muhe</au><au>Tu, Huibin</au><au>Xia, Haiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>43</volume><issue>8</issue><spage>2806</spage><epage>2811</epage><pages>2806-2811</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>Liquid polycarbosilane (LPCS) with a highly branched structure was characterized by fourier-transform infrared spectrometry (FT-IR) and ¹H, ¹³C, ²⁹Si nuclear magnetic resonance spectrometry (NMR). The LPCS was then cured and pyrolysized up to 1,600 °C under flowing argon. The structural evolution process was studied by thermogravimetric analysis and differential scanning calorimetry (TG-DSC), FT-IR, and X-ray diffraction (XRD). Hydrosilylation, dehydrocoupling, and polymerization cross-linking reactions between Si–H and C=C groups occurred at low temperatures, which mainly accounted for the high ceramic yield (70%) up to 1,400 °C. The organic groups gradually decomposed and the structure rearranged at high temperatures. The FT-IR analysis revealed that Si–CH₂–Si chains, the backbone of original polymer, can be retained up to 1,200 °C. At temperatures higher than 1,200 °C, the Si–CH₂–Si chains broke down and crystalline SiC began to form. The final crystalline products were β-SiC and a small amount of carbon.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-008-2539-8</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2008-04, Vol.43 (8), p.2806-2811
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_32551037
source Springer Nature - Complete Springer Journals
subjects Applied sciences
Argon
argon (noble gases)
Branched
Building materials. Ceramics. Glasses
carbon
Ceramic industries
Ceramics
Chains (polymeric)
Characterization and Evaluation of Materials
Chemical industry and chemicals
Chemistry and Materials Science
Classical Mechanics
Crosslinking
Crystal structure
Crystallinity
Crystallography and Scattering Methods
Crystals
Differential scanning calorimetry
Exact sciences and technology
Fourier transform infrared spectroscopy
Fourier transforms
Hydrosilylation
Infrared analysis
Infrared spectroscopy
Liquids
Materials Science
NMR
Nuclear magnetic resonance
nuclear magnetic resonance spectroscopy
Polycarbosilanes
Polymer Sciences
polymerization
polymers
Scientific imaging
Silicon carbide
Solid Mechanics
Spectrometry
Spectroscopy
stable isotopes
Structural ceramics
Technical ceramics
temperature
Thermogravimetric analysis
thermogravimetry
X-ray diffraction
title Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer%E2%80%93ceramic%20conversion%20of%20a%20highly%20branched%20liquid%20polycarbosilane%20for%20SiC-based%20ceramics&rft.jtitle=Journal%20of%20materials%20science&rft.au=Li,%20Houbu&rft.date=2008-04-01&rft.volume=43&rft.issue=8&rft.spage=2806&rft.epage=2811&rft.pages=2806-2811&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-008-2539-8&rft_dat=%3Cproquest_cross%3E32551037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259654112&rft_id=info:pmid/&rfr_iscdi=true