Numerical investigation on the evaporation of droplets depositing on heated surfaces at low Weber numbers

The evaporation of water droplets, impinging with low Weber number and gently depositing on heated surfaces of stainless steel is studied numerically using a combination of fluid flow and heat transfer models. The coupled problem of heat transfer between the surrounding air, the droplet and the wall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2008-04, Vol.51 (7-8), p.1516-1529
Hauptverfasser: STROTOS, George, GAVAISES, Manolis, THEODORAKAKOSC, Andreas, BERGELES, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1529
container_issue 7-8
container_start_page 1516
container_title International journal of heat and mass transfer
container_volume 51
creator STROTOS, George
GAVAISES, Manolis
THEODORAKAKOSC, Andreas
BERGELES, George
description The evaporation of water droplets, impinging with low Weber number and gently depositing on heated surfaces of stainless steel is studied numerically using a combination of fluid flow and heat transfer models. The coupled problem of heat transfer between the surrounding air, the droplet and the wall together with the liquid vaporisation from the droplet's free surface is predicted using a modified VOF methodology accounting for phase-change and variable liquid properties. The surface cooling during droplet's evaporation is predicted by solving simultaneously with the fluid flow and heat transfer equations, the heat conduction equation within the solid wall. The droplet's evaporation rate is predicted using a model from the kinetic theory of gases coupled with the Spalding mass transfer model, for different initial contact angles and substrate's temperatures, which have been varied between 20-90 deg and 60-100 deg C, respectively. Additionally, results from a simplified and computationally less demanding simulation methodology, accounting only for the heat transfer and vaporisation processes using a time-dependent but pre-described droplet shape while neglecting fluid flow are compared with those from the full solution. The numerical results are compared against experiments for the droplet volume regression, life time and droplet shape change, showing a good agreement.
doi_str_mv 10.1016/j.ijheatmasstransfer.2007.07.045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32518540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32518540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-fa4154c2ee2315796393a2558b759c1b07e1345da3a0f205c385fb242394184d3</originalsourceid><addsrcrecordid>eNplUclKBDEQDaLguPxDLoqXHrNOd98UcQPRi-IxZNIVzdCbqbTi35vGwYvwoKji1auqV4SccbbkjK_ON8uweQebOouYou3RQ1wKxsrlDKV3yIJXZV0IXtW7ZMEYL4tacrZPDhA3c8rUakHC49RBDM62NPSfgCm82RSGnmakd6DwacchbkueNnEYW0hIGxgHDCn0bzNzXgQailP01gFSm2g7fNFXWEOk_dTlgEdkz9sW4XgbD8nLzfXz1V3x8HR7f3X5UDhZq1R4q7hWTgAIyXVZr2QtrdC6Wpe6dnzNSuBS6cZKy7xg2slK-7VQInfzSjXykJz-6o5x-JjyRaYL6KBtbQ_DhEYKzSutWCZe_BJdHBAjeDPG0Nn4bTgzs8dmY_57bGaPzQyls8TJdpbFbKHPHBfwT0ew_IJKreQPgtyF4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32518540</pqid></control><display><type>article</type><title>Numerical investigation on the evaporation of droplets depositing on heated surfaces at low Weber numbers</title><source>Access via ScienceDirect (Elsevier)</source><creator>STROTOS, George ; GAVAISES, Manolis ; THEODORAKAKOSC, Andreas ; BERGELES, George</creator><creatorcontrib>STROTOS, George ; GAVAISES, Manolis ; THEODORAKAKOSC, Andreas ; BERGELES, George</creatorcontrib><description>The evaporation of water droplets, impinging with low Weber number and gently depositing on heated surfaces of stainless steel is studied numerically using a combination of fluid flow and heat transfer models. The coupled problem of heat transfer between the surrounding air, the droplet and the wall together with the liquid vaporisation from the droplet's free surface is predicted using a modified VOF methodology accounting for phase-change and variable liquid properties. The surface cooling during droplet's evaporation is predicted by solving simultaneously with the fluid flow and heat transfer equations, the heat conduction equation within the solid wall. The droplet's evaporation rate is predicted using a model from the kinetic theory of gases coupled with the Spalding mass transfer model, for different initial contact angles and substrate's temperatures, which have been varied between 20-90 deg and 60-100 deg C, respectively. Additionally, results from a simplified and computationally less demanding simulation methodology, accounting only for the heat transfer and vaporisation processes using a time-dependent but pre-described droplet shape while neglecting fluid flow are compared with those from the full solution. The numerical results are compared against experiments for the droplet volume regression, life time and droplet shape change, showing a good agreement.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2007.07.045</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier</publisher><subject>Applied sciences ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat transfer ; Theoretical studies. Data and constants. Metering</subject><ispartof>International journal of heat and mass transfer, 2008-04, Vol.51 (7-8), p.1516-1529</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-fa4154c2ee2315796393a2558b759c1b07e1345da3a0f205c385fb242394184d3</citedby><cites>FETCH-LOGICAL-c394t-fa4154c2ee2315796393a2558b759c1b07e1345da3a0f205c385fb242394184d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20187846$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>STROTOS, George</creatorcontrib><creatorcontrib>GAVAISES, Manolis</creatorcontrib><creatorcontrib>THEODORAKAKOSC, Andreas</creatorcontrib><creatorcontrib>BERGELES, George</creatorcontrib><title>Numerical investigation on the evaporation of droplets depositing on heated surfaces at low Weber numbers</title><title>International journal of heat and mass transfer</title><description>The evaporation of water droplets, impinging with low Weber number and gently depositing on heated surfaces of stainless steel is studied numerically using a combination of fluid flow and heat transfer models. The coupled problem of heat transfer between the surrounding air, the droplet and the wall together with the liquid vaporisation from the droplet's free surface is predicted using a modified VOF methodology accounting for phase-change and variable liquid properties. The surface cooling during droplet's evaporation is predicted by solving simultaneously with the fluid flow and heat transfer equations, the heat conduction equation within the solid wall. The droplet's evaporation rate is predicted using a model from the kinetic theory of gases coupled with the Spalding mass transfer model, for different initial contact angles and substrate's temperatures, which have been varied between 20-90 deg and 60-100 deg C, respectively. Additionally, results from a simplified and computationally less demanding simulation methodology, accounting only for the heat transfer and vaporisation processes using a time-dependent but pre-described droplet shape while neglecting fluid flow are compared with those from the full solution. The numerical results are compared against experiments for the droplet volume regression, life time and droplet shape change, showing a good agreement.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNplUclKBDEQDaLguPxDLoqXHrNOd98UcQPRi-IxZNIVzdCbqbTi35vGwYvwoKji1auqV4SccbbkjK_ON8uweQebOouYou3RQ1wKxsrlDKV3yIJXZV0IXtW7ZMEYL4tacrZPDhA3c8rUakHC49RBDM62NPSfgCm82RSGnmakd6DwacchbkueNnEYW0hIGxgHDCn0bzNzXgQailP01gFSm2g7fNFXWEOk_dTlgEdkz9sW4XgbD8nLzfXz1V3x8HR7f3X5UDhZq1R4q7hWTgAIyXVZr2QtrdC6Wpe6dnzNSuBS6cZKy7xg2slK-7VQInfzSjXykJz-6o5x-JjyRaYL6KBtbQ_DhEYKzSutWCZe_BJdHBAjeDPG0Nn4bTgzs8dmY_57bGaPzQyls8TJdpbFbKHPHBfwT0ew_IJKreQPgtyF4A</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>STROTOS, George</creator><creator>GAVAISES, Manolis</creator><creator>THEODORAKAKOSC, Andreas</creator><creator>BERGELES, George</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20080401</creationdate><title>Numerical investigation on the evaporation of droplets depositing on heated surfaces at low Weber numbers</title><author>STROTOS, George ; GAVAISES, Manolis ; THEODORAKAKOSC, Andreas ; BERGELES, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-fa4154c2ee2315796393a2558b759c1b07e1345da3a0f205c385fb242394184d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>STROTOS, George</creatorcontrib><creatorcontrib>GAVAISES, Manolis</creatorcontrib><creatorcontrib>THEODORAKAKOSC, Andreas</creatorcontrib><creatorcontrib>BERGELES, George</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>STROTOS, George</au><au>GAVAISES, Manolis</au><au>THEODORAKAKOSC, Andreas</au><au>BERGELES, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation on the evaporation of droplets depositing on heated surfaces at low Weber numbers</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>51</volume><issue>7-8</issue><spage>1516</spage><epage>1529</epage><pages>1516-1529</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>The evaporation of water droplets, impinging with low Weber number and gently depositing on heated surfaces of stainless steel is studied numerically using a combination of fluid flow and heat transfer models. The coupled problem of heat transfer between the surrounding air, the droplet and the wall together with the liquid vaporisation from the droplet's free surface is predicted using a modified VOF methodology accounting for phase-change and variable liquid properties. The surface cooling during droplet's evaporation is predicted by solving simultaneously with the fluid flow and heat transfer equations, the heat conduction equation within the solid wall. The droplet's evaporation rate is predicted using a model from the kinetic theory of gases coupled with the Spalding mass transfer model, for different initial contact angles and substrate's temperatures, which have been varied between 20-90 deg and 60-100 deg C, respectively. Additionally, results from a simplified and computationally less demanding simulation methodology, accounting only for the heat transfer and vaporisation processes using a time-dependent but pre-described droplet shape while neglecting fluid flow are compared with those from the full solution. The numerical results are compared against experiments for the droplet volume regression, life time and droplet shape change, showing a good agreement.</abstract><cop>Oxford</cop><pub>Elsevier</pub><doi>10.1016/j.ijheatmasstransfer.2007.07.045</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2008-04, Vol.51 (7-8), p.1516-1529
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_32518540
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Heat transfer
Theoretical studies. Data and constants. Metering
title Numerical investigation on the evaporation of droplets depositing on heated surfaces at low Weber numbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A00%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20on%20the%20evaporation%20of%20droplets%20depositing%20on%20heated%20surfaces%20at%20low%20Weber%20numbers&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=STROTOS,%20George&rft.date=2008-04-01&rft.volume=51&rft.issue=7-8&rft.spage=1516&rft.epage=1529&rft.pages=1516-1529&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2007.07.045&rft_dat=%3Cproquest_cross%3E32518540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32518540&rft_id=info:pmid/&rfr_iscdi=true