Materials Development for Advanced Planar Solid Oxide Fuel Cells

High‐power density and high durability are the main targets for solid oxide fuel cell (SOFC) development at Forschungszentrum Jülich. Power density has been further increased by variation of the material composition of perovskite‐based cathodes (Sr content, Co content, substoichiometry) and by optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied ceramic technology 2007-10, Vol.4 (5), p.436-445
Hauptverfasser: Tietz, Frank, Fu, Qingxi, Haanappel, Vincent A. C., Mai, Andreas, Menzler, Norbert H., Uhlenbruck, Sven
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 445
container_issue 5
container_start_page 436
container_title International journal of applied ceramic technology
container_volume 4
creator Tietz, Frank
Fu, Qingxi
Haanappel, Vincent A. C.
Mai, Andreas
Menzler, Norbert H.
Uhlenbruck, Sven
description High‐power density and high durability are the main targets for solid oxide fuel cell (SOFC) development at Forschungszentrum Jülich. Power density has been further increased by variation of the material composition of perovskite‐based cathodes (Sr content, Co content, substoichiometry) and by optimization of the diffusion barrier (Gd‐substituted ceria) between an electrolyte and a cathode. The application of dense diffusion barrier layers significantly improved the performance. The associated avoidance of SrZrO3 formation, however, contributed only to a small extent to the improvement of durability of SOFCs with LSCF cathodes. The redox stability of anode‐supported SOFCs has been addressed in two ways: (a) conventional Ni/yttria‐stabilized zirconia anode substrates have been investigated to explore the limits of re‐oxidation and to determine the degree of oxidation at which no damages occur. (b) Alternative anodes and anode substrates are under development, which basically consist of mixed‐conducting ceramics. Avoiding the high amount of nickel decreases the probability of failure, but does not automatically lead to redox‐stable anodes. The differences in the materials' properties of such ceramics in oxidizing and reducing environment are addressed.
doi_str_mv 10.1111/j.1744-7402.2007.02156.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32500467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32500467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4506-787f222f7bce146308a17d811b71a04392ef6dd97f6d9a4177c3eaaa3ce18d2f3</originalsourceid><addsrcrecordid>eNqNkE9PwkAQxTdGExH9Dnvy1rr_2i0nJSiIASGK0XjZLO00KZYWdwuWb--WGs7OYWaSee9l8kMIU-JTVzcrn0ohPCkI8xkh0ieMBqFfn6DO8XDq9kCEXiDYxzm6sHZFCBechx10N9UVmEznFt_DDvJys4aiwmlpcD_Z6SKGBM9zXWiDX8s8S_CszhLAwy3keAB5bi_RWerccPU3u-ht-LAYPHqT2Wg86E-8WAQk9GQkU8ZYKpcxUBFyEmkqk4jSpaSaCN5jkIZJ0pOu97SgUsYctNbcyaOEpbyLrtvcjSm_t2Artc5s7D7QBZRbqzgLCBGhdMKoFcamtNZAqjYmW2uzV5SoBplaqYaMasioBpk6IFO1s9621p8sh_2_fWr81B8cdpfgtQmZraA-JmjzpdxrMlDvzyM1nL98LqZipKb8F0ZggO0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32500467</pqid></control><display><type>article</type><title>Materials Development for Advanced Planar Solid Oxide Fuel Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tietz, Frank ; Fu, Qingxi ; Haanappel, Vincent A. C. ; Mai, Andreas ; Menzler, Norbert H. ; Uhlenbruck, Sven</creator><creatorcontrib>Tietz, Frank ; Fu, Qingxi ; Haanappel, Vincent A. C. ; Mai, Andreas ; Menzler, Norbert H. ; Uhlenbruck, Sven</creatorcontrib><description>High‐power density and high durability are the main targets for solid oxide fuel cell (SOFC) development at Forschungszentrum Jülich. Power density has been further increased by variation of the material composition of perovskite‐based cathodes (Sr content, Co content, substoichiometry) and by optimization of the diffusion barrier (Gd‐substituted ceria) between an electrolyte and a cathode. The application of dense diffusion barrier layers significantly improved the performance. The associated avoidance of SrZrO3 formation, however, contributed only to a small extent to the improvement of durability of SOFCs with LSCF cathodes. The redox stability of anode‐supported SOFCs has been addressed in two ways: (a) conventional Ni/yttria‐stabilized zirconia anode substrates have been investigated to explore the limits of re‐oxidation and to determine the degree of oxidation at which no damages occur. (b) Alternative anodes and anode substrates are under development, which basically consist of mixed‐conducting ceramics. Avoiding the high amount of nickel decreases the probability of failure, but does not automatically lead to redox‐stable anodes. The differences in the materials' properties of such ceramics in oxidizing and reducing environment are addressed.</description><identifier>ISSN: 1546-542X</identifier><identifier>EISSN: 1744-7402</identifier><identifier>DOI: 10.1111/j.1744-7402.2007.02156.x</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><ispartof>International journal of applied ceramic technology, 2007-10, Vol.4 (5), p.436-445</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4506-787f222f7bce146308a17d811b71a04392ef6dd97f6d9a4177c3eaaa3ce18d2f3</citedby><cites>FETCH-LOGICAL-c4506-787f222f7bce146308a17d811b71a04392ef6dd97f6d9a4177c3eaaa3ce18d2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1744-7402.2007.02156.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1744-7402.2007.02156.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tietz, Frank</creatorcontrib><creatorcontrib>Fu, Qingxi</creatorcontrib><creatorcontrib>Haanappel, Vincent A. C.</creatorcontrib><creatorcontrib>Mai, Andreas</creatorcontrib><creatorcontrib>Menzler, Norbert H.</creatorcontrib><creatorcontrib>Uhlenbruck, Sven</creatorcontrib><title>Materials Development for Advanced Planar Solid Oxide Fuel Cells</title><title>International journal of applied ceramic technology</title><description>High‐power density and high durability are the main targets for solid oxide fuel cell (SOFC) development at Forschungszentrum Jülich. Power density has been further increased by variation of the material composition of perovskite‐based cathodes (Sr content, Co content, substoichiometry) and by optimization of the diffusion barrier (Gd‐substituted ceria) between an electrolyte and a cathode. The application of dense diffusion barrier layers significantly improved the performance. The associated avoidance of SrZrO3 formation, however, contributed only to a small extent to the improvement of durability of SOFCs with LSCF cathodes. The redox stability of anode‐supported SOFCs has been addressed in two ways: (a) conventional Ni/yttria‐stabilized zirconia anode substrates have been investigated to explore the limits of re‐oxidation and to determine the degree of oxidation at which no damages occur. (b) Alternative anodes and anode substrates are under development, which basically consist of mixed‐conducting ceramics. Avoiding the high amount of nickel decreases the probability of failure, but does not automatically lead to redox‐stable anodes. The differences in the materials' properties of such ceramics in oxidizing and reducing environment are addressed.</description><issn>1546-542X</issn><issn>1744-7402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkE9PwkAQxTdGExH9Dnvy1rr_2i0nJSiIASGK0XjZLO00KZYWdwuWb--WGs7OYWaSee9l8kMIU-JTVzcrn0ohPCkI8xkh0ieMBqFfn6DO8XDq9kCEXiDYxzm6sHZFCBechx10N9UVmEznFt_DDvJys4aiwmlpcD_Z6SKGBM9zXWiDX8s8S_CszhLAwy3keAB5bi_RWerccPU3u-ht-LAYPHqT2Wg86E-8WAQk9GQkU8ZYKpcxUBFyEmkqk4jSpaSaCN5jkIZJ0pOu97SgUsYctNbcyaOEpbyLrtvcjSm_t2Artc5s7D7QBZRbqzgLCBGhdMKoFcamtNZAqjYmW2uzV5SoBplaqYaMasioBpk6IFO1s9621p8sh_2_fWr81B8cdpfgtQmZraA-JmjzpdxrMlDvzyM1nL98LqZipKb8F0ZggO0</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Tietz, Frank</creator><creator>Fu, Qingxi</creator><creator>Haanappel, Vincent A. C.</creator><creator>Mai, Andreas</creator><creator>Menzler, Norbert H.</creator><creator>Uhlenbruck, Sven</creator><general>Blackwell Publishing Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>200710</creationdate><title>Materials Development for Advanced Planar Solid Oxide Fuel Cells</title><author>Tietz, Frank ; Fu, Qingxi ; Haanappel, Vincent A. C. ; Mai, Andreas ; Menzler, Norbert H. ; Uhlenbruck, Sven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4506-787f222f7bce146308a17d811b71a04392ef6dd97f6d9a4177c3eaaa3ce18d2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tietz, Frank</creatorcontrib><creatorcontrib>Fu, Qingxi</creatorcontrib><creatorcontrib>Haanappel, Vincent A. C.</creatorcontrib><creatorcontrib>Mai, Andreas</creatorcontrib><creatorcontrib>Menzler, Norbert H.</creatorcontrib><creatorcontrib>Uhlenbruck, Sven</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of applied ceramic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tietz, Frank</au><au>Fu, Qingxi</au><au>Haanappel, Vincent A. C.</au><au>Mai, Andreas</au><au>Menzler, Norbert H.</au><au>Uhlenbruck, Sven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Materials Development for Advanced Planar Solid Oxide Fuel Cells</atitle><jtitle>International journal of applied ceramic technology</jtitle><date>2007-10</date><risdate>2007</risdate><volume>4</volume><issue>5</issue><spage>436</spage><epage>445</epage><pages>436-445</pages><issn>1546-542X</issn><eissn>1744-7402</eissn><abstract>High‐power density and high durability are the main targets for solid oxide fuel cell (SOFC) development at Forschungszentrum Jülich. Power density has been further increased by variation of the material composition of perovskite‐based cathodes (Sr content, Co content, substoichiometry) and by optimization of the diffusion barrier (Gd‐substituted ceria) between an electrolyte and a cathode. The application of dense diffusion barrier layers significantly improved the performance. The associated avoidance of SrZrO3 formation, however, contributed only to a small extent to the improvement of durability of SOFCs with LSCF cathodes. The redox stability of anode‐supported SOFCs has been addressed in two ways: (a) conventional Ni/yttria‐stabilized zirconia anode substrates have been investigated to explore the limits of re‐oxidation and to determine the degree of oxidation at which no damages occur. (b) Alternative anodes and anode substrates are under development, which basically consist of mixed‐conducting ceramics. Avoiding the high amount of nickel decreases the probability of failure, but does not automatically lead to redox‐stable anodes. The differences in the materials' properties of such ceramics in oxidizing and reducing environment are addressed.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1744-7402.2007.02156.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1546-542X
ispartof International journal of applied ceramic technology, 2007-10, Vol.4 (5), p.436-445
issn 1546-542X
1744-7402
language eng
recordid cdi_proquest_miscellaneous_32500467
source Wiley Online Library Journals Frontfile Complete
title Materials Development for Advanced Planar Solid Oxide Fuel Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Materials%20Development%20for%20Advanced%20Planar%20Solid%20Oxide%20Fuel%20Cells&rft.jtitle=International%20journal%20of%20applied%20ceramic%20technology&rft.au=Tietz,%20Frank&rft.date=2007-10&rft.volume=4&rft.issue=5&rft.spage=436&rft.epage=445&rft.pages=436-445&rft.issn=1546-542X&rft.eissn=1744-7402&rft_id=info:doi/10.1111/j.1744-7402.2007.02156.x&rft_dat=%3Cproquest_cross%3E32500467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32500467&rft_id=info:pmid/&rfr_iscdi=true