Mesoscopic modeling of flow and dispersion phenomena in fractured solids

The problem of hydrodynamic dispersion in porous media is considered and numerical predictions of the mixing degree in a single intersection are provided. The flow field in the intersection and adjacent pores or fractures is calculated using a lattice Boltzmann model for single phase flow. A particl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2008-04, Vol.55 (7), p.1525-1540
Hauptverfasser: Michalis, V.K., Kalarakis, A.N., Skouras, E.D., Burganos, V.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1540
container_issue 7
container_start_page 1525
container_title Computers & mathematics with applications (1987)
container_volume 55
creator Michalis, V.K.
Kalarakis, A.N.
Skouras, E.D.
Burganos, V.N.
description The problem of hydrodynamic dispersion in porous media is considered and numerical predictions of the mixing degree in a single intersection are provided. The flow field in the intersection and adjacent pores or fractures is calculated using a lattice Boltzmann model for single phase flow. A particle-tracking scheme is used, subsequently, that monitors the migration of solute particles in the area of the intersection taking into account the local flow field and a Brownian field. Mixing is quantified in terms of the probability of solute transfer across the junction into the opposite fracture. To circumvent the problem of large computational times for cases of fast flow compared to diffusion, a lattice Boltzmann advection–diffusion model is used, that offers significant savings on computational time without sacrificing accuracy. It is shown that the solute dispersion in a fracture network is a strong function of the Reynolds number, even if the Peclet number remains constant, due to the extensive recirculation areas that may develop in regions close to the junction.
doi_str_mv 10.1016/j.camwa.2007.08.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32461504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122107006451</els_id><sourcerecordid>32461504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-52e54990a6eb646978f96f759ea186735dc8c1cf2b79247506da3b6bf6860be43</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvjC2hcIZqEsRM7TkGBEC9pEQ3UlmOPwaskDvYuiL8ny1JTTXPOleYQcsagZMDk5aq0ZvgyJQdoSlAlcLFHFkw1VdFIqfbJAlSrCsY5OyRHOa8AoK44LMjDE-aYbZyCpUN02IfxjUZPfR-_qBkddSFPmHKII53ecYwDjoaGkfpk7HqT0NEc--DyCTnwps94-nePyevd7cvNQ7F8vn-8uV4WtmZ8XQiOom5bMBI7Wcu2Ub6VvhEtGqZkUwlnlWXW865ped0IkM5Uney8VBI6rKtjcr7bnVL82GBe6yFki31vRoybrCteSyZgC178CzJQnLVCCjWj1Q61Keac0OsphcGk7xnS28B6pX8D621gDUrPgWframfh_O5nwKSzDThadCGhXWsXw7_-DwcxhJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082195658</pqid></control><display><type>article</type><title>Mesoscopic modeling of flow and dispersion phenomena in fractured solids</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>Michalis, V.K. ; Kalarakis, A.N. ; Skouras, E.D. ; Burganos, V.N.</creator><creatorcontrib>Michalis, V.K. ; Kalarakis, A.N. ; Skouras, E.D. ; Burganos, V.N.</creatorcontrib><description>The problem of hydrodynamic dispersion in porous media is considered and numerical predictions of the mixing degree in a single intersection are provided. The flow field in the intersection and adjacent pores or fractures is calculated using a lattice Boltzmann model for single phase flow. A particle-tracking scheme is used, subsequently, that monitors the migration of solute particles in the area of the intersection taking into account the local flow field and a Brownian field. Mixing is quantified in terms of the probability of solute transfer across the junction into the opposite fracture. To circumvent the problem of large computational times for cases of fast flow compared to diffusion, a lattice Boltzmann advection–diffusion model is used, that offers significant savings on computational time without sacrificing accuracy. It is shown that the solute dispersion in a fracture network is a strong function of the Reynolds number, even if the Peclet number remains constant, due to the extensive recirculation areas that may develop in regions close to the junction.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2007.08.025</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computation ; Computational fluid dynamics ; Dispersion ; Dispersions ; Fluid flow ; Fracture mechanics ; Intersections ; Lattice Boltzmann ; Lattices ; Mathematical models ; Mixing ; Particle tracking</subject><ispartof>Computers &amp; mathematics with applications (1987), 2008-04, Vol.55 (7), p.1525-1540</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-52e54990a6eb646978f96f759ea186735dc8c1cf2b79247506da3b6bf6860be43</citedby><cites>FETCH-LOGICAL-c412t-52e54990a6eb646978f96f759ea186735dc8c1cf2b79247506da3b6bf6860be43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2007.08.025$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Michalis, V.K.</creatorcontrib><creatorcontrib>Kalarakis, A.N.</creatorcontrib><creatorcontrib>Skouras, E.D.</creatorcontrib><creatorcontrib>Burganos, V.N.</creatorcontrib><title>Mesoscopic modeling of flow and dispersion phenomena in fractured solids</title><title>Computers &amp; mathematics with applications (1987)</title><description>The problem of hydrodynamic dispersion in porous media is considered and numerical predictions of the mixing degree in a single intersection are provided. The flow field in the intersection and adjacent pores or fractures is calculated using a lattice Boltzmann model for single phase flow. A particle-tracking scheme is used, subsequently, that monitors the migration of solute particles in the area of the intersection taking into account the local flow field and a Brownian field. Mixing is quantified in terms of the probability of solute transfer across the junction into the opposite fracture. To circumvent the problem of large computational times for cases of fast flow compared to diffusion, a lattice Boltzmann advection–diffusion model is used, that offers significant savings on computational time without sacrificing accuracy. It is shown that the solute dispersion in a fracture network is a strong function of the Reynolds number, even if the Peclet number remains constant, due to the extensive recirculation areas that may develop in regions close to the junction.</description><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Dispersion</subject><subject>Dispersions</subject><subject>Fluid flow</subject><subject>Fracture mechanics</subject><subject>Intersections</subject><subject>Lattice Boltzmann</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>Mixing</subject><subject>Particle tracking</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvjC2hcIZqEsRM7TkGBEC9pEQ3UlmOPwaskDvYuiL8ny1JTTXPOleYQcsagZMDk5aq0ZvgyJQdoSlAlcLFHFkw1VdFIqfbJAlSrCsY5OyRHOa8AoK44LMjDE-aYbZyCpUN02IfxjUZPfR-_qBkddSFPmHKII53ecYwDjoaGkfpk7HqT0NEc--DyCTnwps94-nePyevd7cvNQ7F8vn-8uV4WtmZ8XQiOom5bMBI7Wcu2Ub6VvhEtGqZkUwlnlWXW865ped0IkM5Uney8VBI6rKtjcr7bnVL82GBe6yFki31vRoybrCteSyZgC178CzJQnLVCCjWj1Q61Keac0OsphcGk7xnS28B6pX8D621gDUrPgWframfh_O5nwKSzDThadCGhXWsXw7_-DwcxhJ4</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Michalis, V.K.</creator><creator>Kalarakis, A.N.</creator><creator>Skouras, E.D.</creator><creator>Burganos, V.N.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080401</creationdate><title>Mesoscopic modeling of flow and dispersion phenomena in fractured solids</title><author>Michalis, V.K. ; Kalarakis, A.N. ; Skouras, E.D. ; Burganos, V.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-52e54990a6eb646978f96f759ea186735dc8c1cf2b79247506da3b6bf6860be43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Dispersion</topic><topic>Dispersions</topic><topic>Fluid flow</topic><topic>Fracture mechanics</topic><topic>Intersections</topic><topic>Lattice Boltzmann</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>Mixing</topic><topic>Particle tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michalis, V.K.</creatorcontrib><creatorcontrib>Kalarakis, A.N.</creatorcontrib><creatorcontrib>Skouras, E.D.</creatorcontrib><creatorcontrib>Burganos, V.N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michalis, V.K.</au><au>Kalarakis, A.N.</au><au>Skouras, E.D.</au><au>Burganos, V.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscopic modeling of flow and dispersion phenomena in fractured solids</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>55</volume><issue>7</issue><spage>1525</spage><epage>1540</epage><pages>1525-1540</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>The problem of hydrodynamic dispersion in porous media is considered and numerical predictions of the mixing degree in a single intersection are provided. The flow field in the intersection and adjacent pores or fractures is calculated using a lattice Boltzmann model for single phase flow. A particle-tracking scheme is used, subsequently, that monitors the migration of solute particles in the area of the intersection taking into account the local flow field and a Brownian field. Mixing is quantified in terms of the probability of solute transfer across the junction into the opposite fracture. To circumvent the problem of large computational times for cases of fast flow compared to diffusion, a lattice Boltzmann advection–diffusion model is used, that offers significant savings on computational time without sacrificing accuracy. It is shown that the solute dispersion in a fracture network is a strong function of the Reynolds number, even if the Peclet number remains constant, due to the extensive recirculation areas that may develop in regions close to the junction.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2007.08.025</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2008-04, Vol.55 (7), p.1525-1540
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_32461504
source Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library
subjects Computation
Computational fluid dynamics
Dispersion
Dispersions
Fluid flow
Fracture mechanics
Intersections
Lattice Boltzmann
Lattices
Mathematical models
Mixing
Particle tracking
title Mesoscopic modeling of flow and dispersion phenomena in fractured solids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscopic%20modeling%20of%20flow%20and%20dispersion%20phenomena%20in%20fractured%20solids&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Michalis,%20V.K.&rft.date=2008-04-01&rft.volume=55&rft.issue=7&rft.spage=1525&rft.epage=1540&rft.pages=1525-1540&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2007.08.025&rft_dat=%3Cproquest_cross%3E32461504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082195658&rft_id=info:pmid/&rft_els_id=S0898122107006451&rfr_iscdi=true