Mesoscopic modeling of flow and dispersion phenomena in fractured solids
The problem of hydrodynamic dispersion in porous media is considered and numerical predictions of the mixing degree in a single intersection are provided. The flow field in the intersection and adjacent pores or fractures is calculated using a lattice Boltzmann model for single phase flow. A particl...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2008-04, Vol.55 (7), p.1525-1540 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1540 |
---|---|
container_issue | 7 |
container_start_page | 1525 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 55 |
creator | Michalis, V.K. Kalarakis, A.N. Skouras, E.D. Burganos, V.N. |
description | The problem of hydrodynamic dispersion in porous media is considered and numerical predictions of the mixing degree in a single intersection are provided. The flow field in the intersection and adjacent pores or fractures is calculated using a lattice Boltzmann model for single phase flow. A particle-tracking scheme is used, subsequently, that monitors the migration of solute particles in the area of the intersection taking into account the local flow field and a Brownian field. Mixing is quantified in terms of the probability of solute transfer across the junction into the opposite fracture. To circumvent the problem of large computational times for cases of fast flow compared to diffusion, a lattice Boltzmann advection–diffusion model is used, that offers significant savings on computational time without sacrificing accuracy. It is shown that the solute dispersion in a fracture network is a strong function of the Reynolds number, even if the Peclet number remains constant, due to the extensive recirculation areas that may develop in regions close to the junction. |
doi_str_mv | 10.1016/j.camwa.2007.08.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32461504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122107006451</els_id><sourcerecordid>32461504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-52e54990a6eb646978f96f759ea186735dc8c1cf2b79247506da3b6bf6860be43</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvjC2hcIZqEsRM7TkGBEC9pEQ3UlmOPwaskDvYuiL8ny1JTTXPOleYQcsagZMDk5aq0ZvgyJQdoSlAlcLFHFkw1VdFIqfbJAlSrCsY5OyRHOa8AoK44LMjDE-aYbZyCpUN02IfxjUZPfR-_qBkddSFPmHKII53ecYwDjoaGkfpk7HqT0NEc--DyCTnwps94-nePyevd7cvNQ7F8vn-8uV4WtmZ8XQiOom5bMBI7Wcu2Ub6VvhEtGqZkUwlnlWXW865ped0IkM5Uney8VBI6rKtjcr7bnVL82GBe6yFki31vRoybrCteSyZgC178CzJQnLVCCjWj1Q61Keac0OsphcGk7xnS28B6pX8D621gDUrPgWframfh_O5nwKSzDThadCGhXWsXw7_-DwcxhJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082195658</pqid></control><display><type>article</type><title>Mesoscopic modeling of flow and dispersion phenomena in fractured solids</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>Michalis, V.K. ; Kalarakis, A.N. ; Skouras, E.D. ; Burganos, V.N.</creator><creatorcontrib>Michalis, V.K. ; Kalarakis, A.N. ; Skouras, E.D. ; Burganos, V.N.</creatorcontrib><description>The problem of hydrodynamic dispersion in porous media is considered and numerical predictions of the mixing degree in a single intersection are provided. The flow field in the intersection and adjacent pores or fractures is calculated using a lattice Boltzmann model for single phase flow. A particle-tracking scheme is used, subsequently, that monitors the migration of solute particles in the area of the intersection taking into account the local flow field and a Brownian field. Mixing is quantified in terms of the probability of solute transfer across the junction into the opposite fracture. To circumvent the problem of large computational times for cases of fast flow compared to diffusion, a lattice Boltzmann advection–diffusion model is used, that offers significant savings on computational time without sacrificing accuracy. It is shown that the solute dispersion in a fracture network is a strong function of the Reynolds number, even if the Peclet number remains constant, due to the extensive recirculation areas that may develop in regions close to the junction.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2007.08.025</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computation ; Computational fluid dynamics ; Dispersion ; Dispersions ; Fluid flow ; Fracture mechanics ; Intersections ; Lattice Boltzmann ; Lattices ; Mathematical models ; Mixing ; Particle tracking</subject><ispartof>Computers & mathematics with applications (1987), 2008-04, Vol.55 (7), p.1525-1540</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-52e54990a6eb646978f96f759ea186735dc8c1cf2b79247506da3b6bf6860be43</citedby><cites>FETCH-LOGICAL-c412t-52e54990a6eb646978f96f759ea186735dc8c1cf2b79247506da3b6bf6860be43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2007.08.025$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Michalis, V.K.</creatorcontrib><creatorcontrib>Kalarakis, A.N.</creatorcontrib><creatorcontrib>Skouras, E.D.</creatorcontrib><creatorcontrib>Burganos, V.N.</creatorcontrib><title>Mesoscopic modeling of flow and dispersion phenomena in fractured solids</title><title>Computers & mathematics with applications (1987)</title><description>The problem of hydrodynamic dispersion in porous media is considered and numerical predictions of the mixing degree in a single intersection are provided. The flow field in the intersection and adjacent pores or fractures is calculated using a lattice Boltzmann model for single phase flow. A particle-tracking scheme is used, subsequently, that monitors the migration of solute particles in the area of the intersection taking into account the local flow field and a Brownian field. Mixing is quantified in terms of the probability of solute transfer across the junction into the opposite fracture. To circumvent the problem of large computational times for cases of fast flow compared to diffusion, a lattice Boltzmann advection–diffusion model is used, that offers significant savings on computational time without sacrificing accuracy. It is shown that the solute dispersion in a fracture network is a strong function of the Reynolds number, even if the Peclet number remains constant, due to the extensive recirculation areas that may develop in regions close to the junction.</description><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Dispersion</subject><subject>Dispersions</subject><subject>Fluid flow</subject><subject>Fracture mechanics</subject><subject>Intersections</subject><subject>Lattice Boltzmann</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>Mixing</subject><subject>Particle tracking</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvjC2hcIZqEsRM7TkGBEC9pEQ3UlmOPwaskDvYuiL8ny1JTTXPOleYQcsagZMDk5aq0ZvgyJQdoSlAlcLFHFkw1VdFIqfbJAlSrCsY5OyRHOa8AoK44LMjDE-aYbZyCpUN02IfxjUZPfR-_qBkddSFPmHKII53ecYwDjoaGkfpk7HqT0NEc--DyCTnwps94-nePyevd7cvNQ7F8vn-8uV4WtmZ8XQiOom5bMBI7Wcu2Ub6VvhEtGqZkUwlnlWXW865ped0IkM5Uney8VBI6rKtjcr7bnVL82GBe6yFki31vRoybrCteSyZgC178CzJQnLVCCjWj1Q61Keac0OsphcGk7xnS28B6pX8D621gDUrPgWframfh_O5nwKSzDThadCGhXWsXw7_-DwcxhJ4</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Michalis, V.K.</creator><creator>Kalarakis, A.N.</creator><creator>Skouras, E.D.</creator><creator>Burganos, V.N.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080401</creationdate><title>Mesoscopic modeling of flow and dispersion phenomena in fractured solids</title><author>Michalis, V.K. ; Kalarakis, A.N. ; Skouras, E.D. ; Burganos, V.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-52e54990a6eb646978f96f759ea186735dc8c1cf2b79247506da3b6bf6860be43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Dispersion</topic><topic>Dispersions</topic><topic>Fluid flow</topic><topic>Fracture mechanics</topic><topic>Intersections</topic><topic>Lattice Boltzmann</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>Mixing</topic><topic>Particle tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michalis, V.K.</creatorcontrib><creatorcontrib>Kalarakis, A.N.</creatorcontrib><creatorcontrib>Skouras, E.D.</creatorcontrib><creatorcontrib>Burganos, V.N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michalis, V.K.</au><au>Kalarakis, A.N.</au><au>Skouras, E.D.</au><au>Burganos, V.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscopic modeling of flow and dispersion phenomena in fractured solids</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>55</volume><issue>7</issue><spage>1525</spage><epage>1540</epage><pages>1525-1540</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>The problem of hydrodynamic dispersion in porous media is considered and numerical predictions of the mixing degree in a single intersection are provided. The flow field in the intersection and adjacent pores or fractures is calculated using a lattice Boltzmann model for single phase flow. A particle-tracking scheme is used, subsequently, that monitors the migration of solute particles in the area of the intersection taking into account the local flow field and a Brownian field. Mixing is quantified in terms of the probability of solute transfer across the junction into the opposite fracture. To circumvent the problem of large computational times for cases of fast flow compared to diffusion, a lattice Boltzmann advection–diffusion model is used, that offers significant savings on computational time without sacrificing accuracy. It is shown that the solute dispersion in a fracture network is a strong function of the Reynolds number, even if the Peclet number remains constant, due to the extensive recirculation areas that may develop in regions close to the junction.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2007.08.025</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2008-04, Vol.55 (7), p.1525-1540 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_32461504 |
source | Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library |
subjects | Computation Computational fluid dynamics Dispersion Dispersions Fluid flow Fracture mechanics Intersections Lattice Boltzmann Lattices Mathematical models Mixing Particle tracking |
title | Mesoscopic modeling of flow and dispersion phenomena in fractured solids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscopic%20modeling%20of%20flow%20and%20dispersion%20phenomena%20in%20fractured%20solids&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Michalis,%20V.K.&rft.date=2008-04-01&rft.volume=55&rft.issue=7&rft.spage=1525&rft.epage=1540&rft.pages=1525-1540&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2007.08.025&rft_dat=%3Cproquest_cross%3E32461504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082195658&rft_id=info:pmid/&rft_els_id=S0898122107006451&rfr_iscdi=true |