Monotone approximations of Green's functions
We study the approximations of the Green's function G in a domain Ω obtained from an approximation of the Dirac mass δ 0 . We prove that under some conditions, these approximations converge monotonically to G , a rather surprising result. To cite this article: E. Chasseigne, R. Ferreira, C. R....
Gespeichert in:
Veröffentlicht in: | Comptes rendus. Mathématique 2004-09, Vol.339 (6), p.395-400 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng ; fre |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 400 |
---|---|
container_issue | 6 |
container_start_page | 395 |
container_title | Comptes rendus. Mathématique |
container_volume | 339 |
creator | Chasseigne, Emmanuel Ferreira, Raúl |
description | We study the approximations of the Green's function
G
in a domain
Ω obtained from an approximation of the Dirac mass
δ
0
. We prove that under some conditions, these approximations converge monotonically to
G
, a rather surprising result.
To cite this article: E. Chasseigne, R. Ferreira, C. R. Acad. Sci. Paris, Ser. I 339 (2004).
Nous étudions les approximations des fonctions de Green
G
dans un domaine
Ω obtenues par approximation de la masse de Dirac
δ
0
. Nous montrons que sous certaines conditions, ces approximations sont monotones, ce qui peut paraître surprenant.
Pour citer cet article : E. Chasseigne, R. Ferreira, C. R. Acad. Sci. Paris, Ser. I 339 (2004). |
doi_str_mv | 10.1016/j.crma.2004.07.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32446315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1631073X04003413</els_id><sourcerecordid>32446315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-5f6c3e5751d8452f904258acf8ce1b7b0be11157cba5131d0df97b0272646ae83</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4BT3tRL-6aj02yC16kaBUqXhS8hWz2BVK2SU22ov_e1Ba8eXqPYWbem0HonOCKYCJulpWJK11RjOsKywpjdoAmRMqmZFy0h3kXjJRYsvdjdJLSEmdRK9sJun4OPozBQ6HX6xi-3EqPLvhUBFvMI4C_SoXdePMLnqIjq4cEZ_s5RW8P96-zx3LxMn-a3S1KQxsxltwKw4BLTvqm5tS2uKa80cY2BkgnO9wBIYRL02lOGOlxb9uMUklFLTQ0bIoud775o48NpFGtXDIwDNpD2CTFaF3nPDwT6Y5oYkgpglXrmBPEb0Ww2hajlmpbjNoWo7BUuZgsuti762T0YKP2xqU_pcBtQ3Cbebc7HuSonw6iSsaBN9C7CGZUfXD_nfkB6-F4PQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32446315</pqid></control><display><type>article</type><title>Monotone approximations of Green's functions</title><source>Elsevier ScienceDirect Journals Collection</source><source>EZB Electronic Journals Library</source><creator>Chasseigne, Emmanuel ; Ferreira, Raúl</creator><creatorcontrib>Chasseigne, Emmanuel ; Ferreira, Raúl</creatorcontrib><description>We study the approximations of the Green's function
G
in a domain
Ω obtained from an approximation of the Dirac mass
δ
0
. We prove that under some conditions, these approximations converge monotonically to
G
, a rather surprising result.
To cite this article: E. Chasseigne, R. Ferreira, C. R. Acad. Sci. Paris, Ser. I 339 (2004).
Nous étudions les approximations des fonctions de Green
G
dans un domaine
Ω obtenues par approximation de la masse de Dirac
δ
0
. Nous montrons que sous certaines conditions, ces approximations sont monotones, ce qui peut paraître surprenant.
Pour citer cet article : E. Chasseigne, R. Ferreira, C. R. Acad. Sci. Paris, Ser. I 339 (2004).</description><identifier>ISSN: 1631-073X</identifier><identifier>ISSN: 1778-3569</identifier><identifier>EISSN: 1778-3569</identifier><identifier>DOI: 10.1016/j.crma.2004.07.003</identifier><language>eng ; fre</language><publisher>Paris: Elsevier SAS</publisher><subject>Exact sciences and technology ; Mathematical analysis ; Mathematics ; Partial differential equations ; Sciences and techniques of general use</subject><ispartof>Comptes rendus. Mathématique, 2004-09, Vol.339 (6), p.395-400</ispartof><rights>2004 Académie des sciences</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1631073X04003413$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16098109$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chasseigne, Emmanuel</creatorcontrib><creatorcontrib>Ferreira, Raúl</creatorcontrib><title>Monotone approximations of Green's functions</title><title>Comptes rendus. Mathématique</title><description>We study the approximations of the Green's function
G
in a domain
Ω obtained from an approximation of the Dirac mass
δ
0
. We prove that under some conditions, these approximations converge monotonically to
G
, a rather surprising result.
To cite this article: E. Chasseigne, R. Ferreira, C. R. Acad. Sci. Paris, Ser. I 339 (2004).
Nous étudions les approximations des fonctions de Green
G
dans un domaine
Ω obtenues par approximation de la masse de Dirac
δ
0
. Nous montrons que sous certaines conditions, ces approximations sont monotones, ce qui peut paraître surprenant.
Pour citer cet article : E. Chasseigne, R. Ferreira, C. R. Acad. Sci. Paris, Ser. I 339 (2004).</description><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><issn>1631-073X</issn><issn>1778-3569</issn><issn>1778-3569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4BT3tRL-6aj02yC16kaBUqXhS8hWz2BVK2SU22ov_e1Ba8eXqPYWbem0HonOCKYCJulpWJK11RjOsKywpjdoAmRMqmZFy0h3kXjJRYsvdjdJLSEmdRK9sJun4OPozBQ6HX6xi-3EqPLvhUBFvMI4C_SoXdePMLnqIjq4cEZ_s5RW8P96-zx3LxMn-a3S1KQxsxltwKw4BLTvqm5tS2uKa80cY2BkgnO9wBIYRL02lOGOlxb9uMUklFLTQ0bIoud775o48NpFGtXDIwDNpD2CTFaF3nPDwT6Y5oYkgpglXrmBPEb0Ww2hajlmpbjNoWo7BUuZgsuti762T0YKP2xqU_pcBtQ3Cbebc7HuSonw6iSsaBN9C7CGZUfXD_nfkB6-F4PQ</recordid><startdate>20040915</startdate><enddate>20040915</enddate><creator>Chasseigne, Emmanuel</creator><creator>Ferreira, Raúl</creator><general>Elsevier SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040915</creationdate><title>Monotone approximations of Green's functions</title><author>Chasseigne, Emmanuel ; Ferreira, Raúl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-5f6c3e5751d8452f904258acf8ce1b7b0be11157cba5131d0df97b0272646ae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; fre</language><creationdate>2004</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chasseigne, Emmanuel</creatorcontrib><creatorcontrib>Ferreira, Raúl</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Comptes rendus. Mathématique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chasseigne, Emmanuel</au><au>Ferreira, Raúl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monotone approximations of Green's functions</atitle><jtitle>Comptes rendus. Mathématique</jtitle><date>2004-09-15</date><risdate>2004</risdate><volume>339</volume><issue>6</issue><spage>395</spage><epage>400</epage><pages>395-400</pages><issn>1631-073X</issn><issn>1778-3569</issn><eissn>1778-3569</eissn><abstract>We study the approximations of the Green's function
G
in a domain
Ω obtained from an approximation of the Dirac mass
δ
0
. We prove that under some conditions, these approximations converge monotonically to
G
, a rather surprising result.
To cite this article: E. Chasseigne, R. Ferreira, C. R. Acad. Sci. Paris, Ser. I 339 (2004).
Nous étudions les approximations des fonctions de Green
G
dans un domaine
Ω obtenues par approximation de la masse de Dirac
δ
0
. Nous montrons que sous certaines conditions, ces approximations sont monotones, ce qui peut paraître surprenant.
Pour citer cet article : E. Chasseigne, R. Ferreira, C. R. Acad. Sci. Paris, Ser. I 339 (2004).</abstract><cop>Paris</cop><pub>Elsevier SAS</pub><doi>10.1016/j.crma.2004.07.003</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1631-073X |
ispartof | Comptes rendus. Mathématique, 2004-09, Vol.339 (6), p.395-400 |
issn | 1631-073X 1778-3569 1778-3569 |
language | eng ; fre |
recordid | cdi_proquest_miscellaneous_32446315 |
source | Elsevier ScienceDirect Journals Collection; EZB Electronic Journals Library |
subjects | Exact sciences and technology Mathematical analysis Mathematics Partial differential equations Sciences and techniques of general use |
title | Monotone approximations of Green's functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monotone%20approximations%20of%20Green's%20functions&rft.jtitle=Comptes%20rendus.%20Math%C3%A9matique&rft.au=Chasseigne,%20Emmanuel&rft.date=2004-09-15&rft.volume=339&rft.issue=6&rft.spage=395&rft.epage=400&rft.pages=395-400&rft.issn=1631-073X&rft.eissn=1778-3569&rft_id=info:doi/10.1016/j.crma.2004.07.003&rft_dat=%3Cproquest_cross%3E32446315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32446315&rft_id=info:pmid/&rft_els_id=S1631073X04003413&rfr_iscdi=true |