Model parameter estimation and feedback control of surface roughness in a sputtering process

This work focuses on model parameter estimation and model-based output feedback control of surface roughness in a sputtering process which involves two surface micro-processes: atom erosion and surface diffusion. This sputtering process is simulated using a kinetic Monte Carlo (kMC) simulation metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2008-04, Vol.63 (7), p.1800-1816
Hauptverfasser: Hu, Gangshi, Lou, Yiming, Christofides, Panagiotis D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1816
container_issue 7
container_start_page 1800
container_title Chemical engineering science
container_volume 63
creator Hu, Gangshi
Lou, Yiming
Christofides, Panagiotis D.
description This work focuses on model parameter estimation and model-based output feedback control of surface roughness in a sputtering process which involves two surface micro-processes: atom erosion and surface diffusion. This sputtering process is simulated using a kinetic Monte Carlo (kMC) simulation method and its surface height evolution can be adequately described by the stochastic Kuramoto–Sivashinsky equation (KSE), a fourth-order nonlinear stochastic partial differential equation (PDE). First, we estimate the four parameters of the stochastic KSE so that the expected surface roughness profile predicted by the stochastic KSE is close (in a least-square sense) to the profile of the kMC simulation of the same process. To perform this model parameter estimation task, we initially formulate the nonlinear stochastic KSE into a system of infinite nonlinear stochastic ordinary differential equations (ODEs). A finite-dimensional approximation of the stochastic KSE is then constructed that captures the dominant mode contribution to the state and the evolution of the state covariance of the stochastic ODE system is derived. Then, a kMC simulator is used to generate representative surface snapshots during process evolution to obtain values of the state vector of the stochastic ODE system. Subsequently, the state covariance of the stochastic ODE system that corresponds to the sputtering process is computed based on the kMC simulation results. Finally, the model parameters of the nonlinear stochastic KSE are obtained by using least-squares fitting so that the state covariance computed from the stochastic KSE process model matches that computed from kMC simulations. Subsequently, we use appropriate finite-dimensional approximations of the identified stochastic KSE model to design state and output feedback controllers, which are applied to the kMC model of the sputtering process. Extensive closed-loop system simulations demonstrate that the controllers reduce the expected surface roughness by 55 % compared to the corresponding values under open-loop operation.
doi_str_mv 10.1016/j.ces.2007.12.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32424100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250907009062</els_id><sourcerecordid>32424100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-f745c38fcfdf086b20d9a51c4e28c95ea5fb6c744d9126fd77174c768ec525a63</originalsourceid><addsrcrecordid>eNqFkE1vFDEMhiMEEkvpD-CWC9xm6mST-RAnVPElFXGht0pR1nFKltnJEs8g9d-T1VYc6cm29Pj161eINwpaBaq72rdI3GqAvlW6BRieiY0a-m1jDNjnYgMAY6MtjC_FK-Z9HftewUbcfcuBJnn0xR9ooSKJl3TwS8qz9HOQkSjsPP6SmOel5EnmKHkt0SPJktf7nzMxy1Rhycd1qQppvpfHkqsdfi1eRD8xXT7WC3H76eOP6y_NzffPX68_3DS4Hcalib2xtYsYQ4Sh22kIo7cKDekBR0vexl2HvTFhVLqLoTrvDfbdQGi19d32Qrw769a7v9f6gTskRpomP1Ne2W210UYBPAkqA1rbYaygOoNYMnOh6I6lxlIenAJ3CtztXf3QnQJ3SrsaeN15-yjuGf0Ui58x8b9FDVpBN5xMvD9zVCP5k6g4xkQzUkiFcHEhp_9c-QsVnZaj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14022589</pqid></control><display><type>article</type><title>Model parameter estimation and feedback control of surface roughness in a sputtering process</title><source>Elsevier ScienceDirect Journals</source><creator>Hu, Gangshi ; Lou, Yiming ; Christofides, Panagiotis D.</creator><creatorcontrib>Hu, Gangshi ; Lou, Yiming ; Christofides, Panagiotis D.</creatorcontrib><description>This work focuses on model parameter estimation and model-based output feedback control of surface roughness in a sputtering process which involves two surface micro-processes: atom erosion and surface diffusion. This sputtering process is simulated using a kinetic Monte Carlo (kMC) simulation method and its surface height evolution can be adequately described by the stochastic Kuramoto–Sivashinsky equation (KSE), a fourth-order nonlinear stochastic partial differential equation (PDE). First, we estimate the four parameters of the stochastic KSE so that the expected surface roughness profile predicted by the stochastic KSE is close (in a least-square sense) to the profile of the kMC simulation of the same process. To perform this model parameter estimation task, we initially formulate the nonlinear stochastic KSE into a system of infinite nonlinear stochastic ordinary differential equations (ODEs). A finite-dimensional approximation of the stochastic KSE is then constructed that captures the dominant mode contribution to the state and the evolution of the state covariance of the stochastic ODE system is derived. Then, a kMC simulator is used to generate representative surface snapshots during process evolution to obtain values of the state vector of the stochastic ODE system. Subsequently, the state covariance of the stochastic ODE system that corresponds to the sputtering process is computed based on the kMC simulation results. Finally, the model parameters of the nonlinear stochastic KSE are obtained by using least-squares fitting so that the state covariance computed from the stochastic KSE process model matches that computed from kMC simulations. Subsequently, we use appropriate finite-dimensional approximations of the identified stochastic KSE model to design state and output feedback controllers, which are applied to the kMC model of the sputtering process. Extensive closed-loop system simulations demonstrate that the controllers reduce the expected surface roughness by 55 % compared to the corresponding values under open-loop operation.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2007.12.008</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; Feedback control ; Model reduction ; Multiscale systems ; Sputtering processes</subject><ispartof>Chemical engineering science, 2008-04, Vol.63 (7), p.1800-1816</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-f745c38fcfdf086b20d9a51c4e28c95ea5fb6c744d9126fd77174c768ec525a63</citedby><cites>FETCH-LOGICAL-c389t-f745c38fcfdf086b20d9a51c4e28c95ea5fb6c744d9126fd77174c768ec525a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0009250907009062$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20210680$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Gangshi</creatorcontrib><creatorcontrib>Lou, Yiming</creatorcontrib><creatorcontrib>Christofides, Panagiotis D.</creatorcontrib><title>Model parameter estimation and feedback control of surface roughness in a sputtering process</title><title>Chemical engineering science</title><description>This work focuses on model parameter estimation and model-based output feedback control of surface roughness in a sputtering process which involves two surface micro-processes: atom erosion and surface diffusion. This sputtering process is simulated using a kinetic Monte Carlo (kMC) simulation method and its surface height evolution can be adequately described by the stochastic Kuramoto–Sivashinsky equation (KSE), a fourth-order nonlinear stochastic partial differential equation (PDE). First, we estimate the four parameters of the stochastic KSE so that the expected surface roughness profile predicted by the stochastic KSE is close (in a least-square sense) to the profile of the kMC simulation of the same process. To perform this model parameter estimation task, we initially formulate the nonlinear stochastic KSE into a system of infinite nonlinear stochastic ordinary differential equations (ODEs). A finite-dimensional approximation of the stochastic KSE is then constructed that captures the dominant mode contribution to the state and the evolution of the state covariance of the stochastic ODE system is derived. Then, a kMC simulator is used to generate representative surface snapshots during process evolution to obtain values of the state vector of the stochastic ODE system. Subsequently, the state covariance of the stochastic ODE system that corresponds to the sputtering process is computed based on the kMC simulation results. Finally, the model parameters of the nonlinear stochastic KSE are obtained by using least-squares fitting so that the state covariance computed from the stochastic KSE process model matches that computed from kMC simulations. Subsequently, we use appropriate finite-dimensional approximations of the identified stochastic KSE model to design state and output feedback controllers, which are applied to the kMC model of the sputtering process. Extensive closed-loop system simulations demonstrate that the controllers reduce the expected surface roughness by 55 % compared to the corresponding values under open-loop operation.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Model reduction</subject><subject>Multiscale systems</subject><subject>Sputtering processes</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE1vFDEMhiMEEkvpD-CWC9xm6mST-RAnVPElFXGht0pR1nFKltnJEs8g9d-T1VYc6cm29Pj161eINwpaBaq72rdI3GqAvlW6BRieiY0a-m1jDNjnYgMAY6MtjC_FK-Z9HftewUbcfcuBJnn0xR9ooSKJl3TwS8qz9HOQkSjsPP6SmOel5EnmKHkt0SPJktf7nzMxy1Rhycd1qQppvpfHkqsdfi1eRD8xXT7WC3H76eOP6y_NzffPX68_3DS4Hcalib2xtYsYQ4Sh22kIo7cKDekBR0vexl2HvTFhVLqLoTrvDfbdQGi19d32Qrw769a7v9f6gTskRpomP1Ne2W210UYBPAkqA1rbYaygOoNYMnOh6I6lxlIenAJ3CtztXf3QnQJ3SrsaeN15-yjuGf0Ui58x8b9FDVpBN5xMvD9zVCP5k6g4xkQzUkiFcHEhp_9c-QsVnZaj</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Hu, Gangshi</creator><creator>Lou, Yiming</creator><creator>Christofides, Panagiotis D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20080401</creationdate><title>Model parameter estimation and feedback control of surface roughness in a sputtering process</title><author>Hu, Gangshi ; Lou, Yiming ; Christofides, Panagiotis D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-f745c38fcfdf086b20d9a51c4e28c95ea5fb6c744d9126fd77174c768ec525a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Model reduction</topic><topic>Multiscale systems</topic><topic>Sputtering processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Gangshi</creatorcontrib><creatorcontrib>Lou, Yiming</creatorcontrib><creatorcontrib>Christofides, Panagiotis D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Gangshi</au><au>Lou, Yiming</au><au>Christofides, Panagiotis D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model parameter estimation and feedback control of surface roughness in a sputtering process</atitle><jtitle>Chemical engineering science</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>63</volume><issue>7</issue><spage>1800</spage><epage>1816</epage><pages>1800-1816</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>This work focuses on model parameter estimation and model-based output feedback control of surface roughness in a sputtering process which involves two surface micro-processes: atom erosion and surface diffusion. This sputtering process is simulated using a kinetic Monte Carlo (kMC) simulation method and its surface height evolution can be adequately described by the stochastic Kuramoto–Sivashinsky equation (KSE), a fourth-order nonlinear stochastic partial differential equation (PDE). First, we estimate the four parameters of the stochastic KSE so that the expected surface roughness profile predicted by the stochastic KSE is close (in a least-square sense) to the profile of the kMC simulation of the same process. To perform this model parameter estimation task, we initially formulate the nonlinear stochastic KSE into a system of infinite nonlinear stochastic ordinary differential equations (ODEs). A finite-dimensional approximation of the stochastic KSE is then constructed that captures the dominant mode contribution to the state and the evolution of the state covariance of the stochastic ODE system is derived. Then, a kMC simulator is used to generate representative surface snapshots during process evolution to obtain values of the state vector of the stochastic ODE system. Subsequently, the state covariance of the stochastic ODE system that corresponds to the sputtering process is computed based on the kMC simulation results. Finally, the model parameters of the nonlinear stochastic KSE are obtained by using least-squares fitting so that the state covariance computed from the stochastic KSE process model matches that computed from kMC simulations. Subsequently, we use appropriate finite-dimensional approximations of the identified stochastic KSE model to design state and output feedback controllers, which are applied to the kMC model of the sputtering process. Extensive closed-loop system simulations demonstrate that the controllers reduce the expected surface roughness by 55 % compared to the corresponding values under open-loop operation.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2007.12.008</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2008-04, Vol.63 (7), p.1800-1816
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_32424100
source Elsevier ScienceDirect Journals
subjects Applied sciences
Chemical engineering
Exact sciences and technology
Feedback control
Model reduction
Multiscale systems
Sputtering processes
title Model parameter estimation and feedback control of surface roughness in a sputtering process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20parameter%20estimation%20and%20feedback%20control%20of%20surface%20roughness%20in%20a%20sputtering%20process&rft.jtitle=Chemical%20engineering%20science&rft.au=Hu,%20Gangshi&rft.date=2008-04-01&rft.volume=63&rft.issue=7&rft.spage=1800&rft.epage=1816&rft.pages=1800-1816&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2007.12.008&rft_dat=%3Cproquest_cross%3E32424100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14022589&rft_id=info:pmid/&rft_els_id=S0009250907009062&rfr_iscdi=true