Justification of the law of Peek into electrostatic

We consider the computation of the electrostatic charge density at the tip of a rounded corner. The relation between the curvature radius and the electrostatic field is given by Peek's empirical law which is valid only for thin, cylindrical or spherical, geometries. In this Note, we justify mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comptes rendus. Mathématique 2006-11, Vol.343 (10), p.671-674
Hauptverfasser: Ciarlet Jr, Patrick, Kaddouri, Samir
Format: Artikel
Sprache:eng ; fre
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 674
container_issue 10
container_start_page 671
container_title Comptes rendus. Mathématique
container_volume 343
creator Ciarlet Jr, Patrick
Kaddouri, Samir
description We consider the computation of the electrostatic charge density at the tip of a rounded corner. The relation between the curvature radius and the electrostatic field is given by Peek's empirical law which is valid only for thin, cylindrical or spherical, geometries. In this Note, we justify mathematically this law and extend it to other geometries. With the help of multiscaled asymptotic expansions, we derive an expression for the charge density for geometries which coincide at infinity with a cone. A numerical illustration is provided.
doi_str_mv 10.1016/j.crma.2006.10.009
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_32407021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32407021</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_324070213</originalsourceid><addsrcrecordid>eNqNi70KwjAURoMo-PsCTpncGm8aTewsijg5OLiVEG4xNW20SfH1jeADOH2Hj3MIWXJgHLhc18x0jWY5gEwHAygGZMKV2mViK4thYil4BkrcxmQaQg0pKlQxIeLch2gra3S0vqW-ovGO1On3Fy-ID2rb6Ck6NLHzISbNzMmo0i7g4rczsjoervtT9uz8q8cQy8YGg87pFn0fSpFvQEHOxd_iB3AqPvI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32407021</pqid></control><display><type>article</type><title>Justification of the law of Peek into electrostatic</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ciarlet Jr, Patrick ; Kaddouri, Samir</creator><creatorcontrib>Ciarlet Jr, Patrick ; Kaddouri, Samir</creatorcontrib><description>We consider the computation of the electrostatic charge density at the tip of a rounded corner. The relation between the curvature radius and the electrostatic field is given by Peek's empirical law which is valid only for thin, cylindrical or spherical, geometries. In this Note, we justify mathematically this law and extend it to other geometries. With the help of multiscaled asymptotic expansions, we derive an expression for the charge density for geometries which coincide at infinity with a cone. A numerical illustration is provided.</description><identifier>ISSN: 1631-073X</identifier><identifier>EISSN: 1778-3569</identifier><identifier>DOI: 10.1016/j.crma.2006.10.009</identifier><language>eng ; fre</language><ispartof>Comptes rendus. Mathématique, 2006-11, Vol.343 (10), p.671-674</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ciarlet Jr, Patrick</creatorcontrib><creatorcontrib>Kaddouri, Samir</creatorcontrib><title>Justification of the law of Peek into electrostatic</title><title>Comptes rendus. Mathématique</title><description>We consider the computation of the electrostatic charge density at the tip of a rounded corner. The relation between the curvature radius and the electrostatic field is given by Peek's empirical law which is valid only for thin, cylindrical or spherical, geometries. In this Note, we justify mathematically this law and extend it to other geometries. With the help of multiscaled asymptotic expansions, we derive an expression for the charge density for geometries which coincide at infinity with a cone. A numerical illustration is provided.</description><issn>1631-073X</issn><issn>1778-3569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNi70KwjAURoMo-PsCTpncGm8aTewsijg5OLiVEG4xNW20SfH1jeADOH2Hj3MIWXJgHLhc18x0jWY5gEwHAygGZMKV2mViK4thYil4BkrcxmQaQg0pKlQxIeLch2gra3S0vqW-ovGO1On3Fy-ID2rb6Ck6NLHzISbNzMmo0i7g4rczsjoervtT9uz8q8cQy8YGg87pFn0fSpFvQEHOxd_iB3AqPvI</recordid><startdate>20061115</startdate><enddate>20061115</enddate><creator>Ciarlet Jr, Patrick</creator><creator>Kaddouri, Samir</creator><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061115</creationdate><title>Justification of the law of Peek into electrostatic</title><author>Ciarlet Jr, Patrick ; Kaddouri, Samir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_324070213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; fre</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciarlet Jr, Patrick</creatorcontrib><creatorcontrib>Kaddouri, Samir</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Comptes rendus. Mathématique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciarlet Jr, Patrick</au><au>Kaddouri, Samir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Justification of the law of Peek into electrostatic</atitle><jtitle>Comptes rendus. Mathématique</jtitle><date>2006-11-15</date><risdate>2006</risdate><volume>343</volume><issue>10</issue><spage>671</spage><epage>674</epage><pages>671-674</pages><issn>1631-073X</issn><eissn>1778-3569</eissn><abstract>We consider the computation of the electrostatic charge density at the tip of a rounded corner. The relation between the curvature radius and the electrostatic field is given by Peek's empirical law which is valid only for thin, cylindrical or spherical, geometries. In this Note, we justify mathematically this law and extend it to other geometries. With the help of multiscaled asymptotic expansions, we derive an expression for the charge density for geometries which coincide at infinity with a cone. A numerical illustration is provided.</abstract><doi>10.1016/j.crma.2006.10.009</doi></addata></record>
fulltext fulltext
identifier ISSN: 1631-073X
ispartof Comptes rendus. Mathématique, 2006-11, Vol.343 (10), p.671-674
issn 1631-073X
1778-3569
language eng ; fre
recordid cdi_proquest_miscellaneous_32407021
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
title Justification of the law of Peek into electrostatic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Justification%20of%20the%20law%20of%20Peek%20into%20electrostatic&rft.jtitle=Comptes%20rendus.%20Math%C3%A9matique&rft.au=Ciarlet%20Jr,%20Patrick&rft.date=2006-11-15&rft.volume=343&rft.issue=10&rft.spage=671&rft.epage=674&rft.pages=671-674&rft.issn=1631-073X&rft.eissn=1778-3569&rft_id=info:doi/10.1016/j.crma.2006.10.009&rft_dat=%3Cproquest%3E32407021%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32407021&rft_id=info:pmid/&rfr_iscdi=true