Killing tensors as irreducible representations of the general linear group
We show that the vector space of fixed valence Killing tensors on a space of constant curvature is naturally isomorphic to a certain highest weight, irreducible representation of the general linear group. The isomorphism is equivariant in the sense that the natural action of the isometry group corre...
Gespeichert in:
Veröffentlicht in: | Comptes rendus. Mathématique 2004-11, Vol.339 (9), p.621-624 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 624 |
---|---|
container_issue | 9 |
container_start_page | 621 |
container_title | Comptes rendus. Mathématique |
container_volume | 339 |
creator | McLenaghan, Raymond G. Milson, Robert Smirnov, Roman G. |
description | We show that the vector space of fixed valence Killing tensors on a space of constant curvature is naturally isomorphic to a certain highest weight, irreducible representation of the general linear group. The isomorphism is equivariant in the sense that the natural action of the isometry group corresponds to the restriction of the linear action to the appropriate subgroup. As an application, we deduce the Delong–Takeuchi–Thompson formula on the dimension of the vector space of Killing tensors from the classical Weyl dimension formula.
To cite this article: R.G. McLenaghan et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).
Nous démontrons que l'espace des tenseurs de Killing d'un ordre donné est naturellement isomorphe à une représentation irréductible de plus haut poids du groupe linéaire. L'isomorphisme est équivariant ; les transformations par isométries correspondent à l'inclusion du groupe des isométries comme un sous-groupe particulier du groupe linéaire. Comme application de cet isomorphisme nous obtenons la formule de Delong–Takeuchi–Thompson sur la dimension de l'espace des tenseurs de Killing à partir de la formule classique de dimension de Weyl.
Pour citer cet article : R.G. McLenaghan et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004). |
doi_str_mv | 10.1016/j.crma.2004.07.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32393822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1631073X04003838</els_id><sourcerecordid>32393822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-fec66d61983f87b47bf12c3227635d303ac94a9076675fb2f3b5b6e26350fe023</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouK7-AU-56K01H23SghcRvxe8KHgLaTpZs3TbOmkF_70pu-DN0wzM874z8ybJOaMZo0xebTKLW5NxSvOMqowydZAsmFJlKgpZHcZeCpZSJT6Ok5MQNjSKKlUtkucX37a-W5MRutBjICYQjwjNZH3dAkEYEAJ0oxl93wXSOzJ-AllDB2haEqVgkKyxn4bT5MiZNsDZvi6T9_u7t9vHdPX68HR7s0ptTosxdWClbCSrSuFKVeeqdoxbwbmSomgEFcZWuamoklIVruZO1EUtgccpdUC5WCaXO98B-68Jwqi3PlhoW9NBPwUtuKhEyWeQ70CLfQgITg_otwZ_NKN6jk1v9BybnmPTVOkYWxRd7N1NsKZ1aDrrw59SzofkZeSudxzEV789oA7WQ2eh8Qh21E3v_1vzC1rng2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32393822</pqid></control><display><type>article</type><title>Killing tensors as irreducible representations of the general linear group</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>McLenaghan, Raymond G. ; Milson, Robert ; Smirnov, Roman G.</creator><creatorcontrib>McLenaghan, Raymond G. ; Milson, Robert ; Smirnov, Roman G.</creatorcontrib><description>We show that the vector space of fixed valence Killing tensors on a space of constant curvature is naturally isomorphic to a certain highest weight, irreducible representation of the general linear group. The isomorphism is equivariant in the sense that the natural action of the isometry group corresponds to the restriction of the linear action to the appropriate subgroup. As an application, we deduce the Delong–Takeuchi–Thompson formula on the dimension of the vector space of Killing tensors from the classical Weyl dimension formula.
To cite this article: R.G. McLenaghan et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).
Nous démontrons que l'espace des tenseurs de Killing d'un ordre donné est naturellement isomorphe à une représentation irréductible de plus haut poids du groupe linéaire. L'isomorphisme est équivariant ; les transformations par isométries correspondent à l'inclusion du groupe des isométries comme un sous-groupe particulier du groupe linéaire. Comme application de cet isomorphisme nous obtenons la formule de Delong–Takeuchi–Thompson sur la dimension de l'espace des tenseurs de Killing à partir de la formule classique de dimension de Weyl.
Pour citer cet article : R.G. McLenaghan et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).</description><identifier>ISSN: 1631-073X</identifier><identifier>ISSN: 1778-3569</identifier><identifier>EISSN: 1778-3569</identifier><identifier>DOI: 10.1016/j.crma.2004.07.017</identifier><language>eng</language><publisher>Paris: Elsevier SAS</publisher><subject>Algebra ; Associative rings and algebras ; Differential geometry ; Exact sciences and technology ; Geometry ; Geometry, differential geometry, and topology ; Group theory ; Group theory and generalizations ; Mathematical methods in physics ; Mathematics ; Physics ; Sciences and techniques of general use</subject><ispartof>Comptes rendus. Mathématique, 2004-11, Vol.339 (9), p.621-624</ispartof><rights>2004 Académie des sciences</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-fec66d61983f87b47bf12c3227635d303ac94a9076675fb2f3b5b6e26350fe023</citedby><cites>FETCH-LOGICAL-c405t-fec66d61983f87b47bf12c3227635d303ac94a9076675fb2f3b5b6e26350fe023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1631073X04003838$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16263548$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>McLenaghan, Raymond G.</creatorcontrib><creatorcontrib>Milson, Robert</creatorcontrib><creatorcontrib>Smirnov, Roman G.</creatorcontrib><title>Killing tensors as irreducible representations of the general linear group</title><title>Comptes rendus. Mathématique</title><description>We show that the vector space of fixed valence Killing tensors on a space of constant curvature is naturally isomorphic to a certain highest weight, irreducible representation of the general linear group. The isomorphism is equivariant in the sense that the natural action of the isometry group corresponds to the restriction of the linear action to the appropriate subgroup. As an application, we deduce the Delong–Takeuchi–Thompson formula on the dimension of the vector space of Killing tensors from the classical Weyl dimension formula.
To cite this article: R.G. McLenaghan et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).
Nous démontrons que l'espace des tenseurs de Killing d'un ordre donné est naturellement isomorphe à une représentation irréductible de plus haut poids du groupe linéaire. L'isomorphisme est équivariant ; les transformations par isométries correspondent à l'inclusion du groupe des isométries comme un sous-groupe particulier du groupe linéaire. Comme application de cet isomorphisme nous obtenons la formule de Delong–Takeuchi–Thompson sur la dimension de l'espace des tenseurs de Killing à partir de la formule classique de dimension de Weyl.
Pour citer cet article : R.G. McLenaghan et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).</description><subject>Algebra</subject><subject>Associative rings and algebras</subject><subject>Differential geometry</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Geometry, differential geometry, and topology</subject><subject>Group theory</subject><subject>Group theory and generalizations</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>1631-073X</issn><issn>1778-3569</issn><issn>1778-3569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouK7-AU-56K01H23SghcRvxe8KHgLaTpZs3TbOmkF_70pu-DN0wzM874z8ybJOaMZo0xebTKLW5NxSvOMqowydZAsmFJlKgpZHcZeCpZSJT6Ok5MQNjSKKlUtkucX37a-W5MRutBjICYQjwjNZH3dAkEYEAJ0oxl93wXSOzJ-AllDB2haEqVgkKyxn4bT5MiZNsDZvi6T9_u7t9vHdPX68HR7s0ptTosxdWClbCSrSuFKVeeqdoxbwbmSomgEFcZWuamoklIVruZO1EUtgccpdUC5WCaXO98B-68Jwqi3PlhoW9NBPwUtuKhEyWeQ70CLfQgITg_otwZ_NKN6jk1v9BybnmPTVOkYWxRd7N1NsKZ1aDrrw59SzofkZeSudxzEV789oA7WQ2eh8Qh21E3v_1vzC1rng2s</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>McLenaghan, Raymond G.</creator><creator>Milson, Robert</creator><creator>Smirnov, Roman G.</creator><general>Elsevier SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20041101</creationdate><title>Killing tensors as irreducible representations of the general linear group</title><author>McLenaghan, Raymond G. ; Milson, Robert ; Smirnov, Roman G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-fec66d61983f87b47bf12c3227635d303ac94a9076675fb2f3b5b6e26350fe023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algebra</topic><topic>Associative rings and algebras</topic><topic>Differential geometry</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Geometry, differential geometry, and topology</topic><topic>Group theory</topic><topic>Group theory and generalizations</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLenaghan, Raymond G.</creatorcontrib><creatorcontrib>Milson, Robert</creatorcontrib><creatorcontrib>Smirnov, Roman G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Comptes rendus. Mathématique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McLenaghan, Raymond G.</au><au>Milson, Robert</au><au>Smirnov, Roman G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Killing tensors as irreducible representations of the general linear group</atitle><jtitle>Comptes rendus. Mathématique</jtitle><date>2004-11-01</date><risdate>2004</risdate><volume>339</volume><issue>9</issue><spage>621</spage><epage>624</epage><pages>621-624</pages><issn>1631-073X</issn><issn>1778-3569</issn><eissn>1778-3569</eissn><abstract>We show that the vector space of fixed valence Killing tensors on a space of constant curvature is naturally isomorphic to a certain highest weight, irreducible representation of the general linear group. The isomorphism is equivariant in the sense that the natural action of the isometry group corresponds to the restriction of the linear action to the appropriate subgroup. As an application, we deduce the Delong–Takeuchi–Thompson formula on the dimension of the vector space of Killing tensors from the classical Weyl dimension formula.
To cite this article: R.G. McLenaghan et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).
Nous démontrons que l'espace des tenseurs de Killing d'un ordre donné est naturellement isomorphe à une représentation irréductible de plus haut poids du groupe linéaire. L'isomorphisme est équivariant ; les transformations par isométries correspondent à l'inclusion du groupe des isométries comme un sous-groupe particulier du groupe linéaire. Comme application de cet isomorphisme nous obtenons la formule de Delong–Takeuchi–Thompson sur la dimension de l'espace des tenseurs de Killing à partir de la formule classique de dimension de Weyl.
Pour citer cet article : R.G. McLenaghan et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).</abstract><cop>Paris</cop><pub>Elsevier SAS</pub><doi>10.1016/j.crma.2004.07.017</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1631-073X |
ispartof | Comptes rendus. Mathématique, 2004-11, Vol.339 (9), p.621-624 |
issn | 1631-073X 1778-3569 1778-3569 |
language | eng |
recordid | cdi_proquest_miscellaneous_32393822 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algebra Associative rings and algebras Differential geometry Exact sciences and technology Geometry Geometry, differential geometry, and topology Group theory Group theory and generalizations Mathematical methods in physics Mathematics Physics Sciences and techniques of general use |
title | Killing tensors as irreducible representations of the general linear group |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Killing%20tensors%20as%20irreducible%20representations%20of%20the%20general%20linear%20group&rft.jtitle=Comptes%20rendus.%20Math%C3%A9matique&rft.au=McLenaghan,%20Raymond%20G.&rft.date=2004-11-01&rft.volume=339&rft.issue=9&rft.spage=621&rft.epage=624&rft.pages=621-624&rft.issn=1631-073X&rft.eissn=1778-3569&rft_id=info:doi/10.1016/j.crma.2004.07.017&rft_dat=%3Cproquest_cross%3E32393822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32393822&rft_id=info:pmid/&rft_els_id=S1631073X04003838&rfr_iscdi=true |