Frontal waves in a strait
The slow downstream (x) variation of a dense and inviscid bottom current (u) in a parabolic strait with a sill at y = 0 is investigated. Vanishing potential vorticity is assumed and the density interface in the 1 1/2-layer model intersects the bottom at y = y1 and y = y2 < y1, where the vanishing...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2008-03, Vol.598, p.321-334 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 334 |
---|---|
container_issue | |
container_start_page | 321 |
container_title | Journal of fluid mechanics |
container_volume | 598 |
creator | STERN, MELVIN E. SIMEONOV, JULIAN A. |
description | The slow downstream (x) variation of a dense and inviscid bottom current (u) in a parabolic strait with a sill at y = 0 is investigated. Vanishing potential vorticity is assumed and the density interface in the 1 1/2-layer model intersects the bottom at y = y1 and y = y2 < y1, where the vanishing layer thickness (h) provides the free dynamical boundary condition. For time-dependent finite-amplitude waves, the nonlinear hyperbolic equations obtained here give the wave velocity and indicate the sense in which lateral wave steepening occurs. The long-wave perturbations of y1(x,t), y2(x,t) are stationary if
$
\[
\frac{y_1 }{y_2 } = 1 - \frac{2}{1 + \sqrt {6{g}'\mu / f^2} }
\]
$
where g′ is the reduced gravity, μ = ∂2M/∂y2 is the parabolic curvature of the bottom elevation (M), and f is the Coriolis parameter. This controls the upstream–downstream flow, and the downstream nonlinearity generates ‘short’ waves which may initiate lateral mixing with the adjacent (less dense) water mass. It is also shown that short waves are exponentially amplified with a maximum growth rate (about 1/day) depending only on g′μ/f2. When g′μ/f2 = 1 (a narrow strait) the instability is suppressed, but for small g′μ/f2≪1 the growth rate is comparable to the flat bottom case μ = 0, studied by Griffiths, Killworth & Stern (J. Fluid Mech. Vol. 117, 1982, p. 343.). |
doi_str_mv | 10.1017/S0022112007009950 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32363011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112007009950</cupid><sourcerecordid>21022364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-14831680efbb9ef9cffed5b32a4aa00e934beafed36a111ad58faf4b0228ca0a3</originalsourceid><addsrcrecordid>eNqFkNtKw0AQhhdRsFYfoHdB0LvoTPaQ5lKKbYWCZxRvlkm6K6lpUndTD29vQksFRbxa2P-bn2-GsR7CCQLGp7cAUYQYAcQASSJhi3VQqCSMlZDbrNPGYZvvsj3vZwDIIYk7rDd0VVlTEbzTm_FBXgYU-NpRXu-zHUuFNwfrt8vuh-d3g3E4uRxdDM4mYSaEqkMUfY6qD8amaWJskllrpjLlEQkiAJNwkRpq_rgiRKSp7FuyIm18-hkB8S47XvUuXPW6NL7W89xnpiioNNXSax5xxQHxXzDCppMr0YCHP8BZtXRls0TLJCBk1EK4gjJXee-M1QuXz8l9agTdnlT_Omkzc7QuJp9RYR2VWe43gxGgiCW0puGKy31tPjY5uRetYh5LrUbX-ulR3owe8EqPG56vXWieunz6bL6N_7b5AnwgkY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210904524</pqid></control><display><type>article</type><title>Frontal waves in a strait</title><source>Cambridge University Press Journals Complete</source><creator>STERN, MELVIN E. ; SIMEONOV, JULIAN A.</creator><creatorcontrib>STERN, MELVIN E. ; SIMEONOV, JULIAN A.</creatorcontrib><description>The slow downstream (x) variation of a dense and inviscid bottom current (u) in a parabolic strait with a sill at y = 0 is investigated. Vanishing potential vorticity is assumed and the density interface in the 1 1/2-layer model intersects the bottom at y = y1 and y = y2 < y1, where the vanishing layer thickness (h) provides the free dynamical boundary condition. For time-dependent finite-amplitude waves, the nonlinear hyperbolic equations obtained here give the wave velocity and indicate the sense in which lateral wave steepening occurs. The long-wave perturbations of y1(x,t), y2(x,t) are stationary if
$
\[
\frac{y_1 }{y_2 } = 1 - \frac{2}{1 + \sqrt {6{g}'\mu / f^2} }
\]
$
where g′ is the reduced gravity, μ = ∂2M/∂y2 is the parabolic curvature of the bottom elevation (M), and f is the Coriolis parameter. This controls the upstream–downstream flow, and the downstream nonlinearity generates ‘short’ waves which may initiate lateral mixing with the adjacent (less dense) water mass. It is also shown that short waves are exponentially amplified with a maximum growth rate (about 1/day) depending only on g′μ/f2. When g′μ/f2 = 1 (a narrow strait) the instability is suppressed, but for small g′μ/f2≪1 the growth rate is comparable to the flat bottom case μ = 0, studied by Griffiths, Killworth & Stern (J. Fluid Mech. Vol. 117, 1982, p. 343.).</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112007009950</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Bottom currents ; Boundary conditions ; Coastal oceanography, estuaries. Regional oceanography ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fluid mechanics ; Geophysics. Techniques, methods, instrumentation and models ; Physics of the oceans ; Wave velocity</subject><ispartof>Journal of fluid mechanics, 2008-03, Vol.598, p.321-334</ispartof><rights>Copyright © Cambridge University Press 2008</rights><rights>2008 INIST-CNRS</rights><rights>Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-14831680efbb9ef9cffed5b32a4aa00e934beafed36a111ad58faf4b0228ca0a3</citedby><cites>FETCH-LOGICAL-c446t-14831680efbb9ef9cffed5b32a4aa00e934beafed36a111ad58faf4b0228ca0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112007009950/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20147501$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>STERN, MELVIN E.</creatorcontrib><creatorcontrib>SIMEONOV, JULIAN A.</creatorcontrib><title>Frontal waves in a strait</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The slow downstream (x) variation of a dense and inviscid bottom current (u) in a parabolic strait with a sill at y = 0 is investigated. Vanishing potential vorticity is assumed and the density interface in the 1 1/2-layer model intersects the bottom at y = y1 and y = y2 < y1, where the vanishing layer thickness (h) provides the free dynamical boundary condition. For time-dependent finite-amplitude waves, the nonlinear hyperbolic equations obtained here give the wave velocity and indicate the sense in which lateral wave steepening occurs. The long-wave perturbations of y1(x,t), y2(x,t) are stationary if
$
\[
\frac{y_1 }{y_2 } = 1 - \frac{2}{1 + \sqrt {6{g}'\mu / f^2} }
\]
$
where g′ is the reduced gravity, μ = ∂2M/∂y2 is the parabolic curvature of the bottom elevation (M), and f is the Coriolis parameter. This controls the upstream–downstream flow, and the downstream nonlinearity generates ‘short’ waves which may initiate lateral mixing with the adjacent (less dense) water mass. It is also shown that short waves are exponentially amplified with a maximum growth rate (about 1/day) depending only on g′μ/f2. When g′μ/f2 = 1 (a narrow strait) the instability is suppressed, but for small g′μ/f2≪1 the growth rate is comparable to the flat bottom case μ = 0, studied by Griffiths, Killworth & Stern (J. Fluid Mech. Vol. 117, 1982, p. 343.).</description><subject>Bottom currents</subject><subject>Boundary conditions</subject><subject>Coastal oceanography, estuaries. Regional oceanography</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluid mechanics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Physics of the oceans</subject><subject>Wave velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkNtKw0AQhhdRsFYfoHdB0LvoTPaQ5lKKbYWCZxRvlkm6K6lpUndTD29vQksFRbxa2P-bn2-GsR7CCQLGp7cAUYQYAcQASSJhi3VQqCSMlZDbrNPGYZvvsj3vZwDIIYk7rDd0VVlTEbzTm_FBXgYU-NpRXu-zHUuFNwfrt8vuh-d3g3E4uRxdDM4mYSaEqkMUfY6qD8amaWJskllrpjLlEQkiAJNwkRpq_rgiRKSp7FuyIm18-hkB8S47XvUuXPW6NL7W89xnpiioNNXSax5xxQHxXzDCppMr0YCHP8BZtXRls0TLJCBk1EK4gjJXee-M1QuXz8l9agTdnlT_Omkzc7QuJp9RYR2VWe43gxGgiCW0puGKy31tPjY5uRetYh5LrUbX-ulR3owe8EqPG56vXWieunz6bL6N_7b5AnwgkY0</recordid><startdate>20080310</startdate><enddate>20080310</enddate><creator>STERN, MELVIN E.</creator><creator>SIMEONOV, JULIAN A.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20080310</creationdate><title>Frontal waves in a strait</title><author>STERN, MELVIN E. ; SIMEONOV, JULIAN A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-14831680efbb9ef9cffed5b32a4aa00e934beafed36a111ad58faf4b0228ca0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bottom currents</topic><topic>Boundary conditions</topic><topic>Coastal oceanography, estuaries. Regional oceanography</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluid mechanics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Physics of the oceans</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>STERN, MELVIN E.</creatorcontrib><creatorcontrib>SIMEONOV, JULIAN A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>STERN, MELVIN E.</au><au>SIMEONOV, JULIAN A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frontal waves in a strait</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2008-03-10</date><risdate>2008</risdate><volume>598</volume><spage>321</spage><epage>334</epage><pages>321-334</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>The slow downstream (x) variation of a dense and inviscid bottom current (u) in a parabolic strait with a sill at y = 0 is investigated. Vanishing potential vorticity is assumed and the density interface in the 1 1/2-layer model intersects the bottom at y = y1 and y = y2 < y1, where the vanishing layer thickness (h) provides the free dynamical boundary condition. For time-dependent finite-amplitude waves, the nonlinear hyperbolic equations obtained here give the wave velocity and indicate the sense in which lateral wave steepening occurs. The long-wave perturbations of y1(x,t), y2(x,t) are stationary if
$
\[
\frac{y_1 }{y_2 } = 1 - \frac{2}{1 + \sqrt {6{g}'\mu / f^2} }
\]
$
where g′ is the reduced gravity, μ = ∂2M/∂y2 is the parabolic curvature of the bottom elevation (M), and f is the Coriolis parameter. This controls the upstream–downstream flow, and the downstream nonlinearity generates ‘short’ waves which may initiate lateral mixing with the adjacent (less dense) water mass. It is also shown that short waves are exponentially amplified with a maximum growth rate (about 1/day) depending only on g′μ/f2. When g′μ/f2 = 1 (a narrow strait) the instability is suppressed, but for small g′μ/f2≪1 the growth rate is comparable to the flat bottom case μ = 0, studied by Griffiths, Killworth & Stern (J. Fluid Mech. Vol. 117, 1982, p. 343.).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112007009950</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2008-03, Vol.598, p.321-334 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_32363011 |
source | Cambridge University Press Journals Complete |
subjects | Bottom currents Boundary conditions Coastal oceanography, estuaries. Regional oceanography Earth, ocean, space Exact sciences and technology External geophysics Fluid mechanics Geophysics. Techniques, methods, instrumentation and models Physics of the oceans Wave velocity |
title | Frontal waves in a strait |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frontal%20waves%20in%20a%20strait&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=STERN,%20MELVIN%20E.&rft.date=2008-03-10&rft.volume=598&rft.spage=321&rft.epage=334&rft.pages=321-334&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112007009950&rft_dat=%3Cproquest_cross%3E21022364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210904524&rft_id=info:pmid/&rft_cupid=10_1017_S0022112007009950&rfr_iscdi=true |