Accuracy of SPH viscous flow models
In this paper, we quantify how the accuracy of 1D and 2D smoothed particle hydrodynamics simulations of viscous diffusion depend upon (i) the mean inter‐particle distance Δx, (ii) the smoothing length h and (iii) the randomness of the particle positions. In both the 1D and 2D cases, the method conve...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 2008-03, Vol.56 (8), p.1261-1269 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1269 |
---|---|
container_issue | 8 |
container_start_page | 1261 |
container_title | International journal for numerical methods in fluids |
container_volume | 56 |
creator | Graham, David I. Hughes, Jason P. |
description | In this paper, we quantify how the accuracy of 1D and 2D smoothed particle hydrodynamics simulations of viscous diffusion depend upon (i) the mean inter‐particle distance Δx, (ii) the smoothing length h and (iii) the randomness of the particle positions. In both the 1D and 2D cases, the method converges only in the case where randomness is absent and for a few values of h/Δx including both integer (for 1D) and non‐integer values (both 1D and 2D). For any other (fixed) value of h/Δx, the method does not converge. In most cases, increasing randomness decreases the accuracy of the results, as does the ability of particles to move. Simulations using larger values of h/Δx appear to be less influenced by particle randomness and ability to move. Copyright © 2007 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/fld.1619 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32269024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32269024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3649-7cb80d9b080b23999dfc57fdb65142e894580b259e532d133e747e19c1edd8bc3</originalsourceid><addsrcrecordid>eNp10EtLAzEUBeAgCtYq-BMGRHEz9SaZSSbLUu1ULFV8ILgJmTxgNO3UpLX23zulpTtXd3E_DoeD0DmGHgYgN86bHmZYHKAOBsFToIweog4QjlMCAh-jkxg_AUCQgnbQRV_rZVB6nTQueXkaJT911M0yJs43q2TaGOvjKTpyykd7trtd9Da8ex2M0vFjeT_oj1NNWSZSrqsCjKiggIpQIYRxOufOVCzHGbGFyPLNJxc2p8RgSi3PuMVCY2tMUWnaRVfb3Hlovpc2LuS0LWO9VzPbVpKUECaAZC283kIdmhiDdXIe6qkKa4lBblaQ7Qpys0JLL3eZKmrlXVAzXce9J0CJYKxoXbp1q9rb9b95cji-3eXufB0X9nfvVfiSjFOey_dJKcvnD4xLPpEP9A_VKXdO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32269024</pqid></control><display><type>article</type><title>Accuracy of SPH viscous flow models</title><source>Wiley Online Library All Journals</source><creator>Graham, David I. ; Hughes, Jason P.</creator><creatorcontrib>Graham, David I. ; Hughes, Jason P.</creatorcontrib><description>In this paper, we quantify how the accuracy of 1D and 2D smoothed particle hydrodynamics simulations of viscous diffusion depend upon (i) the mean inter‐particle distance Δx, (ii) the smoothing length h and (iii) the randomness of the particle positions. In both the 1D and 2D cases, the method converges only in the case where randomness is absent and for a few values of h/Δx including both integer (for 1D) and non‐integer values (both 1D and 2D). For any other (fixed) value of h/Δx, the method does not converge. In most cases, increasing randomness decreases the accuracy of the results, as does the ability of particles to move. Simulations using larger values of h/Δx appear to be less influenced by particle randomness and ability to move. Copyright © 2007 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.1619</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Computational methods in fluid dynamics ; elliptic ; error estimation ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; mesh-free methods ; particle methods ; Physics ; validation ; viscous flows</subject><ispartof>International journal for numerical methods in fluids, 2008-03, Vol.56 (8), p.1261-1269</ispartof><rights>Copyright © 2007 John Wiley & Sons, Ltd.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3649-7cb80d9b080b23999dfc57fdb65142e894580b259e532d133e747e19c1edd8bc3</citedby><cites>FETCH-LOGICAL-c3649-7cb80d9b080b23999dfc57fdb65142e894580b259e532d133e747e19c1edd8bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.1619$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.1619$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,1416,23928,23929,25138,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20329668$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Graham, David I.</creatorcontrib><creatorcontrib>Hughes, Jason P.</creatorcontrib><title>Accuracy of SPH viscous flow models</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>In this paper, we quantify how the accuracy of 1D and 2D smoothed particle hydrodynamics simulations of viscous diffusion depend upon (i) the mean inter‐particle distance Δx, (ii) the smoothing length h and (iii) the randomness of the particle positions. In both the 1D and 2D cases, the method converges only in the case where randomness is absent and for a few values of h/Δx including both integer (for 1D) and non‐integer values (both 1D and 2D). For any other (fixed) value of h/Δx, the method does not converge. In most cases, increasing randomness decreases the accuracy of the results, as does the ability of particles to move. Simulations using larger values of h/Δx appear to be less influenced by particle randomness and ability to move. Copyright © 2007 John Wiley & Sons, Ltd.</description><subject>Computational methods in fluid dynamics</subject><subject>elliptic</subject><subject>error estimation</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>mesh-free methods</subject><subject>particle methods</subject><subject>Physics</subject><subject>validation</subject><subject>viscous flows</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEUBeAgCtYq-BMGRHEz9SaZSSbLUu1ULFV8ILgJmTxgNO3UpLX23zulpTtXd3E_DoeD0DmGHgYgN86bHmZYHKAOBsFToIweog4QjlMCAh-jkxg_AUCQgnbQRV_rZVB6nTQueXkaJT911M0yJs43q2TaGOvjKTpyykd7trtd9Da8ex2M0vFjeT_oj1NNWSZSrqsCjKiggIpQIYRxOufOVCzHGbGFyPLNJxc2p8RgSi3PuMVCY2tMUWnaRVfb3Hlovpc2LuS0LWO9VzPbVpKUECaAZC283kIdmhiDdXIe6qkKa4lBblaQ7Qpys0JLL3eZKmrlXVAzXce9J0CJYKxoXbp1q9rb9b95cji-3eXufB0X9nfvVfiSjFOey_dJKcvnD4xLPpEP9A_VKXdO</recordid><startdate>20080320</startdate><enddate>20080320</enddate><creator>Graham, David I.</creator><creator>Hughes, Jason P.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080320</creationdate><title>Accuracy of SPH viscous flow models</title><author>Graham, David I. ; Hughes, Jason P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3649-7cb80d9b080b23999dfc57fdb65142e894580b259e532d133e747e19c1edd8bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computational methods in fluid dynamics</topic><topic>elliptic</topic><topic>error estimation</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>mesh-free methods</topic><topic>particle methods</topic><topic>Physics</topic><topic>validation</topic><topic>viscous flows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graham, David I.</creatorcontrib><creatorcontrib>Hughes, Jason P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graham, David I.</au><au>Hughes, Jason P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accuracy of SPH viscous flow models</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2008-03-20</date><risdate>2008</risdate><volume>56</volume><issue>8</issue><spage>1261</spage><epage>1269</epage><pages>1261-1269</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>In this paper, we quantify how the accuracy of 1D and 2D smoothed particle hydrodynamics simulations of viscous diffusion depend upon (i) the mean inter‐particle distance Δx, (ii) the smoothing length h and (iii) the randomness of the particle positions. In both the 1D and 2D cases, the method converges only in the case where randomness is absent and for a few values of h/Δx including both integer (for 1D) and non‐integer values (both 1D and 2D). For any other (fixed) value of h/Δx, the method does not converge. In most cases, increasing randomness decreases the accuracy of the results, as does the ability of particles to move. Simulations using larger values of h/Δx appear to be less influenced by particle randomness and ability to move. Copyright © 2007 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/fld.1619</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 2008-03, Vol.56 (8), p.1261-1269 |
issn | 0271-2091 1097-0363 |
language | eng |
recordid | cdi_proquest_miscellaneous_32269024 |
source | Wiley Online Library All Journals |
subjects | Computational methods in fluid dynamics elliptic error estimation Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) mesh-free methods particle methods Physics validation viscous flows |
title | Accuracy of SPH viscous flow models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A12%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accuracy%20of%20SPH%20viscous%20flow%20models&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Graham,%20David%20I.&rft.date=2008-03-20&rft.volume=56&rft.issue=8&rft.spage=1261&rft.epage=1269&rft.pages=1261-1269&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.1619&rft_dat=%3Cproquest_cross%3E32269024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32269024&rft_id=info:pmid/&rfr_iscdi=true |