Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach
The development of a finite element formulation that is appropriate for the computation of Young’s and Shear modulus of single walled carbon nanotubes (SWCNTs) is the purpose of this paper. The method utilizes the atomistic microstructure of the nanotubes. According to the three-dimensional atomic n...
Gespeichert in:
Veröffentlicht in: | Computational materials science 2008-02, Vol.41 (4), p.561-569 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 569 |
---|---|
container_issue | 4 |
container_start_page | 561 |
container_title | Computational materials science |
container_volume | 41 |
creator | Giannopoulos, G.I. Kakavas, P.A. Anifantis, N.K. |
description | The development of a finite element formulation that is appropriate for the computation of Young’s and Shear modulus of single walled carbon nanotubes (SWCNTs) is the purpose of this paper. The method utilizes the atomistic microstructure of the nanotubes. According to the three-dimensional atomic nanostructure of SWCNTs, nodes are defined at the atom locations. Appropriate spring-type elements interconnect these nodes to simulate properly interatomic interactions. This approach is implemented via the use of three-dimensional spring-like elements each node of which obeys to three translations and three rotations. In this way, molecular mechanics theory can be applied directly while the atomic bonds are modeled by using exclusively physical variables such as bond stretching, bond angle bending and torsional rotation resistance force constants. With the proposed method, the Young’s and shear modulus of numerous SWCNTs were determined. The effect of the nanotube radius and thickness on the mechanical behavior of SWCNTs was tested and demonstrated. The numerical results show good agreement with other corresponding values which are available in the literature. |
doi_str_mv | 10.1016/j.commatsci.2007.05.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32242833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025607001565</els_id><sourcerecordid>32242833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-e2a3e0b9fb4627522032dc468df0be07341100e27f4828ebc4f372d872b552883</originalsourceid><addsrcrecordid>eNqFkEFv3CAQhVHVSN2m-Q3l0t7sDmAb9hhFaVopUi_tGWE8ZFlhvAW8VW_96cHaKNeeQMP33mMeIR8ZtAzY8OXY2mWeTcnWtxxAttC3df6G7JiS-wYUsLdkB3suG-D98I68z_kIldgrviP_7s8mrKb4JdLF0XJAis6hLf6MdEZ7MNFbE-gpLSdMxWPesOzjU0D6x4SAE7UmjVUeTVzKOlZi3d6pofmUtstocqWcj75U94AzxkLNqVoae_hArpwJGW9ezmvy6-v9z7tvzeOPh-93t4-NFXIoDXIjEMa9G7uBy55zEHyy3aAmByOCFB1jAMil6xRXONrOCcknJfnY91wpcU0-X3xr7O8Vc9GzzxZDMBGXNWvBeceVEBWUF9CmJeeETtctZpP-agZ6a1wf9WvjemtcQ6_rvCo_vUSYXDtzyUTr86ucA4Oh_r5ytxcO675nj0lXJ4wWJ59q83pa_H-zngHLnZ1m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32242833</pqid></control><display><type>article</type><title>Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Giannopoulos, G.I. ; Kakavas, P.A. ; Anifantis, N.K.</creator><creatorcontrib>Giannopoulos, G.I. ; Kakavas, P.A. ; Anifantis, N.K.</creatorcontrib><description>The development of a finite element formulation that is appropriate for the computation of Young’s and Shear modulus of single walled carbon nanotubes (SWCNTs) is the purpose of this paper. The method utilizes the atomistic microstructure of the nanotubes. According to the three-dimensional atomic nanostructure of SWCNTs, nodes are defined at the atom locations. Appropriate spring-type elements interconnect these nodes to simulate properly interatomic interactions. This approach is implemented via the use of three-dimensional spring-like elements each node of which obeys to three translations and three rotations. In this way, molecular mechanics theory can be applied directly while the atomic bonds are modeled by using exclusively physical variables such as bond stretching, bond angle bending and torsional rotation resistance force constants. With the proposed method, the Young’s and shear modulus of numerous SWCNTs were determined. The effect of the nanotube radius and thickness on the mechanical behavior of SWCNTs was tested and demonstrated. The numerical results show good agreement with other corresponding values which are available in the literature.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2007.05.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carbon nanotubes ; Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Finite element method (FEM) ; Mechanical and acoustical properties of condensed matter ; Mechanical properties ; Mechanical properties of nanoscale materials ; Molecular mechanics ; Nanostructures ; Physics</subject><ispartof>Computational materials science, 2008-02, Vol.41 (4), p.561-569</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-e2a3e0b9fb4627522032dc468df0be07341100e27f4828ebc4f372d872b552883</citedby><cites>FETCH-LOGICAL-c376t-e2a3e0b9fb4627522032dc468df0be07341100e27f4828ebc4f372d872b552883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.commatsci.2007.05.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20106462$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Giannopoulos, G.I.</creatorcontrib><creatorcontrib>Kakavas, P.A.</creatorcontrib><creatorcontrib>Anifantis, N.K.</creatorcontrib><title>Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach</title><title>Computational materials science</title><description>The development of a finite element formulation that is appropriate for the computation of Young’s and Shear modulus of single walled carbon nanotubes (SWCNTs) is the purpose of this paper. The method utilizes the atomistic microstructure of the nanotubes. According to the three-dimensional atomic nanostructure of SWCNTs, nodes are defined at the atom locations. Appropriate spring-type elements interconnect these nodes to simulate properly interatomic interactions. This approach is implemented via the use of three-dimensional spring-like elements each node of which obeys to three translations and three rotations. In this way, molecular mechanics theory can be applied directly while the atomic bonds are modeled by using exclusively physical variables such as bond stretching, bond angle bending and torsional rotation resistance force constants. With the proposed method, the Young’s and shear modulus of numerous SWCNTs were determined. The effect of the nanotube radius and thickness on the mechanical behavior of SWCNTs was tested and demonstrated. The numerical results show good agreement with other corresponding values which are available in the literature.</description><subject>Carbon nanotubes</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Finite element method (FEM)</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties</subject><subject>Mechanical properties of nanoscale materials</subject><subject>Molecular mechanics</subject><subject>Nanostructures</subject><subject>Physics</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv3CAQhVHVSN2m-Q3l0t7sDmAb9hhFaVopUi_tGWE8ZFlhvAW8VW_96cHaKNeeQMP33mMeIR8ZtAzY8OXY2mWeTcnWtxxAttC3df6G7JiS-wYUsLdkB3suG-D98I68z_kIldgrviP_7s8mrKb4JdLF0XJAis6hLf6MdEZ7MNFbE-gpLSdMxWPesOzjU0D6x4SAE7UmjVUeTVzKOlZi3d6pofmUtstocqWcj75U94AzxkLNqVoae_hArpwJGW9ezmvy6-v9z7tvzeOPh-93t4-NFXIoDXIjEMa9G7uBy55zEHyy3aAmByOCFB1jAMil6xRXONrOCcknJfnY91wpcU0-X3xr7O8Vc9GzzxZDMBGXNWvBeceVEBWUF9CmJeeETtctZpP-agZ6a1wf9WvjemtcQ6_rvCo_vUSYXDtzyUTr86ucA4Oh_r5ytxcO675nj0lXJ4wWJ59q83pa_H-zngHLnZ1m</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Giannopoulos, G.I.</creator><creator>Kakavas, P.A.</creator><creator>Anifantis, N.K.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080201</creationdate><title>Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach</title><author>Giannopoulos, G.I. ; Kakavas, P.A. ; Anifantis, N.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-e2a3e0b9fb4627522032dc468df0be07341100e27f4828ebc4f372d872b552883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Carbon nanotubes</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Finite element method (FEM)</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties</topic><topic>Mechanical properties of nanoscale materials</topic><topic>Molecular mechanics</topic><topic>Nanostructures</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giannopoulos, G.I.</creatorcontrib><creatorcontrib>Kakavas, P.A.</creatorcontrib><creatorcontrib>Anifantis, N.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giannopoulos, G.I.</au><au>Kakavas, P.A.</au><au>Anifantis, N.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach</atitle><jtitle>Computational materials science</jtitle><date>2008-02-01</date><risdate>2008</risdate><volume>41</volume><issue>4</issue><spage>561</spage><epage>569</epage><pages>561-569</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>The development of a finite element formulation that is appropriate for the computation of Young’s and Shear modulus of single walled carbon nanotubes (SWCNTs) is the purpose of this paper. The method utilizes the atomistic microstructure of the nanotubes. According to the three-dimensional atomic nanostructure of SWCNTs, nodes are defined at the atom locations. Appropriate spring-type elements interconnect these nodes to simulate properly interatomic interactions. This approach is implemented via the use of three-dimensional spring-like elements each node of which obeys to three translations and three rotations. In this way, molecular mechanics theory can be applied directly while the atomic bonds are modeled by using exclusively physical variables such as bond stretching, bond angle bending and torsional rotation resistance force constants. With the proposed method, the Young’s and shear modulus of numerous SWCNTs were determined. The effect of the nanotube radius and thickness on the mechanical behavior of SWCNTs was tested and demonstrated. The numerical results show good agreement with other corresponding values which are available in the literature.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2007.05.016</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0256 |
ispartof | Computational materials science, 2008-02, Vol.41 (4), p.561-569 |
issn | 0927-0256 1879-0801 |
language | eng |
recordid | cdi_proquest_miscellaneous_32242833 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Carbon nanotubes Condensed matter: structure, mechanical and thermal properties Exact sciences and technology Finite element method (FEM) Mechanical and acoustical properties of condensed matter Mechanical properties Mechanical properties of nanoscale materials Molecular mechanics Nanostructures Physics |
title | Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A17%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20the%20effective%20mechanical%20properties%20of%20single%20walled%20carbon%20nanotubes%20using%20a%20spring%20based%20finite%20element%20approach&rft.jtitle=Computational%20materials%20science&rft.au=Giannopoulos,%20G.I.&rft.date=2008-02-01&rft.volume=41&rft.issue=4&rft.spage=561&rft.epage=569&rft.pages=561-569&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2007.05.016&rft_dat=%3Cproquest_cross%3E32242833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32242833&rft_id=info:pmid/&rft_els_id=S0927025607001565&rfr_iscdi=true |