Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach

The development of a finite element formulation that is appropriate for the computation of Young’s and Shear modulus of single walled carbon nanotubes (SWCNTs) is the purpose of this paper. The method utilizes the atomistic microstructure of the nanotubes. According to the three-dimensional atomic n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2008-02, Vol.41 (4), p.561-569
Hauptverfasser: Giannopoulos, G.I., Kakavas, P.A., Anifantis, N.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 569
container_issue 4
container_start_page 561
container_title Computational materials science
container_volume 41
creator Giannopoulos, G.I.
Kakavas, P.A.
Anifantis, N.K.
description The development of a finite element formulation that is appropriate for the computation of Young’s and Shear modulus of single walled carbon nanotubes (SWCNTs) is the purpose of this paper. The method utilizes the atomistic microstructure of the nanotubes. According to the three-dimensional atomic nanostructure of SWCNTs, nodes are defined at the atom locations. Appropriate spring-type elements interconnect these nodes to simulate properly interatomic interactions. This approach is implemented via the use of three-dimensional spring-like elements each node of which obeys to three translations and three rotations. In this way, molecular mechanics theory can be applied directly while the atomic bonds are modeled by using exclusively physical variables such as bond stretching, bond angle bending and torsional rotation resistance force constants. With the proposed method, the Young’s and shear modulus of numerous SWCNTs were determined. The effect of the nanotube radius and thickness on the mechanical behavior of SWCNTs was tested and demonstrated. The numerical results show good agreement with other corresponding values which are available in the literature.
doi_str_mv 10.1016/j.commatsci.2007.05.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32242833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025607001565</els_id><sourcerecordid>32242833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-e2a3e0b9fb4627522032dc468df0be07341100e27f4828ebc4f372d872b552883</originalsourceid><addsrcrecordid>eNqFkEFv3CAQhVHVSN2m-Q3l0t7sDmAb9hhFaVopUi_tGWE8ZFlhvAW8VW_96cHaKNeeQMP33mMeIR8ZtAzY8OXY2mWeTcnWtxxAttC3df6G7JiS-wYUsLdkB3suG-D98I68z_kIldgrviP_7s8mrKb4JdLF0XJAis6hLf6MdEZ7MNFbE-gpLSdMxWPesOzjU0D6x4SAE7UmjVUeTVzKOlZi3d6pofmUtstocqWcj75U94AzxkLNqVoae_hArpwJGW9ezmvy6-v9z7tvzeOPh-93t4-NFXIoDXIjEMa9G7uBy55zEHyy3aAmByOCFB1jAMil6xRXONrOCcknJfnY91wpcU0-X3xr7O8Vc9GzzxZDMBGXNWvBeceVEBWUF9CmJeeETtctZpP-agZ6a1wf9WvjemtcQ6_rvCo_vUSYXDtzyUTr86ucA4Oh_r5ytxcO675nj0lXJ4wWJ59q83pa_H-zngHLnZ1m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32242833</pqid></control><display><type>article</type><title>Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Giannopoulos, G.I. ; Kakavas, P.A. ; Anifantis, N.K.</creator><creatorcontrib>Giannopoulos, G.I. ; Kakavas, P.A. ; Anifantis, N.K.</creatorcontrib><description>The development of a finite element formulation that is appropriate for the computation of Young’s and Shear modulus of single walled carbon nanotubes (SWCNTs) is the purpose of this paper. The method utilizes the atomistic microstructure of the nanotubes. According to the three-dimensional atomic nanostructure of SWCNTs, nodes are defined at the atom locations. Appropriate spring-type elements interconnect these nodes to simulate properly interatomic interactions. This approach is implemented via the use of three-dimensional spring-like elements each node of which obeys to three translations and three rotations. In this way, molecular mechanics theory can be applied directly while the atomic bonds are modeled by using exclusively physical variables such as bond stretching, bond angle bending and torsional rotation resistance force constants. With the proposed method, the Young’s and shear modulus of numerous SWCNTs were determined. The effect of the nanotube radius and thickness on the mechanical behavior of SWCNTs was tested and demonstrated. The numerical results show good agreement with other corresponding values which are available in the literature.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2007.05.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carbon nanotubes ; Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Finite element method (FEM) ; Mechanical and acoustical properties of condensed matter ; Mechanical properties ; Mechanical properties of nanoscale materials ; Molecular mechanics ; Nanostructures ; Physics</subject><ispartof>Computational materials science, 2008-02, Vol.41 (4), p.561-569</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-e2a3e0b9fb4627522032dc468df0be07341100e27f4828ebc4f372d872b552883</citedby><cites>FETCH-LOGICAL-c376t-e2a3e0b9fb4627522032dc468df0be07341100e27f4828ebc4f372d872b552883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.commatsci.2007.05.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20106462$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Giannopoulos, G.I.</creatorcontrib><creatorcontrib>Kakavas, P.A.</creatorcontrib><creatorcontrib>Anifantis, N.K.</creatorcontrib><title>Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach</title><title>Computational materials science</title><description>The development of a finite element formulation that is appropriate for the computation of Young’s and Shear modulus of single walled carbon nanotubes (SWCNTs) is the purpose of this paper. The method utilizes the atomistic microstructure of the nanotubes. According to the three-dimensional atomic nanostructure of SWCNTs, nodes are defined at the atom locations. Appropriate spring-type elements interconnect these nodes to simulate properly interatomic interactions. This approach is implemented via the use of three-dimensional spring-like elements each node of which obeys to three translations and three rotations. In this way, molecular mechanics theory can be applied directly while the atomic bonds are modeled by using exclusively physical variables such as bond stretching, bond angle bending and torsional rotation resistance force constants. With the proposed method, the Young’s and shear modulus of numerous SWCNTs were determined. The effect of the nanotube radius and thickness on the mechanical behavior of SWCNTs was tested and demonstrated. The numerical results show good agreement with other corresponding values which are available in the literature.</description><subject>Carbon nanotubes</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Finite element method (FEM)</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties</subject><subject>Mechanical properties of nanoscale materials</subject><subject>Molecular mechanics</subject><subject>Nanostructures</subject><subject>Physics</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv3CAQhVHVSN2m-Q3l0t7sDmAb9hhFaVopUi_tGWE8ZFlhvAW8VW_96cHaKNeeQMP33mMeIR8ZtAzY8OXY2mWeTcnWtxxAttC3df6G7JiS-wYUsLdkB3suG-D98I68z_kIldgrviP_7s8mrKb4JdLF0XJAis6hLf6MdEZ7MNFbE-gpLSdMxWPesOzjU0D6x4SAE7UmjVUeTVzKOlZi3d6pofmUtstocqWcj75U94AzxkLNqVoae_hArpwJGW9ezmvy6-v9z7tvzeOPh-93t4-NFXIoDXIjEMa9G7uBy55zEHyy3aAmByOCFB1jAMil6xRXONrOCcknJfnY91wpcU0-X3xr7O8Vc9GzzxZDMBGXNWvBeceVEBWUF9CmJeeETtctZpP-agZ6a1wf9WvjemtcQ6_rvCo_vUSYXDtzyUTr86ucA4Oh_r5ytxcO675nj0lXJ4wWJ59q83pa_H-zngHLnZ1m</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Giannopoulos, G.I.</creator><creator>Kakavas, P.A.</creator><creator>Anifantis, N.K.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080201</creationdate><title>Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach</title><author>Giannopoulos, G.I. ; Kakavas, P.A. ; Anifantis, N.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-e2a3e0b9fb4627522032dc468df0be07341100e27f4828ebc4f372d872b552883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Carbon nanotubes</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Finite element method (FEM)</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties</topic><topic>Mechanical properties of nanoscale materials</topic><topic>Molecular mechanics</topic><topic>Nanostructures</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giannopoulos, G.I.</creatorcontrib><creatorcontrib>Kakavas, P.A.</creatorcontrib><creatorcontrib>Anifantis, N.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giannopoulos, G.I.</au><au>Kakavas, P.A.</au><au>Anifantis, N.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach</atitle><jtitle>Computational materials science</jtitle><date>2008-02-01</date><risdate>2008</risdate><volume>41</volume><issue>4</issue><spage>561</spage><epage>569</epage><pages>561-569</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>The development of a finite element formulation that is appropriate for the computation of Young’s and Shear modulus of single walled carbon nanotubes (SWCNTs) is the purpose of this paper. The method utilizes the atomistic microstructure of the nanotubes. According to the three-dimensional atomic nanostructure of SWCNTs, nodes are defined at the atom locations. Appropriate spring-type elements interconnect these nodes to simulate properly interatomic interactions. This approach is implemented via the use of three-dimensional spring-like elements each node of which obeys to three translations and three rotations. In this way, molecular mechanics theory can be applied directly while the atomic bonds are modeled by using exclusively physical variables such as bond stretching, bond angle bending and torsional rotation resistance force constants. With the proposed method, the Young’s and shear modulus of numerous SWCNTs were determined. The effect of the nanotube radius and thickness on the mechanical behavior of SWCNTs was tested and demonstrated. The numerical results show good agreement with other corresponding values which are available in the literature.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2007.05.016</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2008-02, Vol.41 (4), p.561-569
issn 0927-0256
1879-0801
language eng
recordid cdi_proquest_miscellaneous_32242833
source ScienceDirect Journals (5 years ago - present)
subjects Carbon nanotubes
Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
Finite element method (FEM)
Mechanical and acoustical properties of condensed matter
Mechanical properties
Mechanical properties of nanoscale materials
Molecular mechanics
Nanostructures
Physics
title Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A17%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20the%20effective%20mechanical%20properties%20of%20single%20walled%20carbon%20nanotubes%20using%20a%20spring%20based%20finite%20element%20approach&rft.jtitle=Computational%20materials%20science&rft.au=Giannopoulos,%20G.I.&rft.date=2008-02-01&rft.volume=41&rft.issue=4&rft.spage=561&rft.epage=569&rft.pages=561-569&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2007.05.016&rft_dat=%3Cproquest_cross%3E32242833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32242833&rft_id=info:pmid/&rft_els_id=S0927025607001565&rfr_iscdi=true