Selection of Input Stimulus for Fault Diagnosis of Analog Circuits Using ARMA Model

The paper addresses the problem of fault diagnosis of analog circuits based on dictionary approach. The proposed approach first identifies an adequate set of test frequencies to optimize the process of detection and isolation of simulated fault scenarios. The circuit under test (CUT) is then excited...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electronics and communications 2004-01, Vol.58 (3), p.212-217
Hauptverfasser: Mohsen, A.K. Adel, El-Yazeed, M.F. Abu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 217
container_issue 3
container_start_page 212
container_title International journal of electronics and communications
container_volume 58
creator Mohsen, A.K. Adel
El-Yazeed, M.F. Abu
description The paper addresses the problem of fault diagnosis of analog circuits based on dictionary approach. The proposed approach first identifies an adequate set of test frequencies to optimize the process of detection and isolation of simulated fault scenarios. The circuit under test (CUT) is then excited by an input stimulus composed of a set of sinusoidal waveforms with the selected test frequencies. The circuit response, at different fault scenarios, is preprocessed by an autoregressive moving average (ARMA) model to yield a set of features formulating the fault dictionary. Collected features are utilized to train and test a back-propagation (BP) neural network (NN) based classifier. Demonstrative results from soft fault simulation of two active circuit examples prove the excellent effectiveness of the proposed algorithm.
doi_str_mv 10.1078/1434-8411-54100231
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32143005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1434841104702216</els_id><sourcerecordid>670588041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-41f755257f5a931503f09d51351d873e93912d33887600f6fd561740181b0b4f3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAkwWA1vAZ8eJI7FUhQJSKyRKZytN7MqVGxc7RuLtcVS6MDDdDd9_uv9D6BrIHZBS3EPO8kzkABnPgRDK4ASNoACREVZVp2k_AufoIoRtQkhJixFaLpVVTW9ch53Gr90-9njZm120MWDtPJ7V0fb40dSbzgUTBmrS1dZt8NT4Jpo-4FUw3QZP3hcTvHCtspfoTNc2qKvfOUar2dPH9CWbvz2_TifzrGG86LMcdMk55aXmdcWAE6ZJ1XJgHFpRMlWxCmjLmBBlQYgudMsLKHMCAtZknWs2RreHu3vvPqMKvdyZ0Chr6065GCSjqTUhPIE3f8Ctiz61CJKSKn0gaJ4geoAa70LwSsu9N7vaf0sgcpAsB4dycCiPklPo4RBSqeeXUV6GxqiuUa3xSatsnfkv_gMWpH5r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>209257824</pqid></control><display><type>article</type><title>Selection of Input Stimulus for Fault Diagnosis of Analog Circuits Using ARMA Model</title><source>Elsevier ScienceDirect Journals</source><creator>Mohsen, A.K. Adel ; El-Yazeed, M.F. Abu</creator><creatorcontrib>Mohsen, A.K. Adel ; El-Yazeed, M.F. Abu</creatorcontrib><description>The paper addresses the problem of fault diagnosis of analog circuits based on dictionary approach. The proposed approach first identifies an adequate set of test frequencies to optimize the process of detection and isolation of simulated fault scenarios. The circuit under test (CUT) is then excited by an input stimulus composed of a set of sinusoidal waveforms with the selected test frequencies. The circuit response, at different fault scenarios, is preprocessed by an autoregressive moving average (ARMA) model to yield a set of features formulating the fault dictionary. Collected features are utilized to train and test a back-propagation (BP) neural network (NN) based classifier. Demonstrative results from soft fault simulation of two active circuit examples prove the excellent effectiveness of the proposed algorithm.</description><identifier>ISSN: 1434-8411</identifier><identifier>EISSN: 1618-0399</identifier><identifier>DOI: 10.1078/1434-8411-54100231</identifier><language>eng</language><publisher>Stuttgart: Elsevier GmbH</publisher><subject>ARMA model ; Fault diagnosis ; Input stimulus ; Neural networks ; Sensitivity analysis</subject><ispartof>International journal of electronics and communications, 2004-01, Vol.58 (3), p.212-217</ispartof><rights>2004 Urban &amp; Fischer Verlag</rights><rights>Copyright Urban &amp; Fischer Verlag 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-41f755257f5a931503f09d51351d873e93912d33887600f6fd561740181b0b4f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1434841104702216$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mohsen, A.K. Adel</creatorcontrib><creatorcontrib>El-Yazeed, M.F. Abu</creatorcontrib><title>Selection of Input Stimulus for Fault Diagnosis of Analog Circuits Using ARMA Model</title><title>International journal of electronics and communications</title><description>The paper addresses the problem of fault diagnosis of analog circuits based on dictionary approach. The proposed approach first identifies an adequate set of test frequencies to optimize the process of detection and isolation of simulated fault scenarios. The circuit under test (CUT) is then excited by an input stimulus composed of a set of sinusoidal waveforms with the selected test frequencies. The circuit response, at different fault scenarios, is preprocessed by an autoregressive moving average (ARMA) model to yield a set of features formulating the fault dictionary. Collected features are utilized to train and test a back-propagation (BP) neural network (NN) based classifier. Demonstrative results from soft fault simulation of two active circuit examples prove the excellent effectiveness of the proposed algorithm.</description><subject>ARMA model</subject><subject>Fault diagnosis</subject><subject>Input stimulus</subject><subject>Neural networks</subject><subject>Sensitivity analysis</subject><issn>1434-8411</issn><issn>1618-0399</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kLFOwzAQhi0EEqXwAkwWA1vAZ8eJI7FUhQJSKyRKZytN7MqVGxc7RuLtcVS6MDDdDd9_uv9D6BrIHZBS3EPO8kzkABnPgRDK4ASNoACREVZVp2k_AufoIoRtQkhJixFaLpVVTW9ch53Gr90-9njZm120MWDtPJ7V0fb40dSbzgUTBmrS1dZt8NT4Jpo-4FUw3QZP3hcTvHCtspfoTNc2qKvfOUar2dPH9CWbvz2_TifzrGG86LMcdMk55aXmdcWAE6ZJ1XJgHFpRMlWxCmjLmBBlQYgudMsLKHMCAtZknWs2RreHu3vvPqMKvdyZ0Chr6065GCSjqTUhPIE3f8Ctiz61CJKSKn0gaJ4geoAa70LwSsu9N7vaf0sgcpAsB4dycCiPklPo4RBSqeeXUV6GxqiuUa3xSatsnfkv_gMWpH5r</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Mohsen, A.K. Adel</creator><creator>El-Yazeed, M.F. Abu</creator><general>Elsevier GmbH</general><general>Urban &amp; Fischer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88F</scope><scope>88K</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M1Q</scope><scope>M2T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20040101</creationdate><title>Selection of Input Stimulus for Fault Diagnosis of Analog Circuits Using ARMA Model</title><author>Mohsen, A.K. Adel ; El-Yazeed, M.F. Abu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-41f755257f5a931503f09d51351d873e93912d33887600f6fd561740181b0b4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>ARMA model</topic><topic>Fault diagnosis</topic><topic>Input stimulus</topic><topic>Neural networks</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohsen, A.K. Adel</creatorcontrib><creatorcontrib>El-Yazeed, M.F. Abu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Military Database</collection><collection>Telecommunications Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of electronics and communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohsen, A.K. Adel</au><au>El-Yazeed, M.F. Abu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of Input Stimulus for Fault Diagnosis of Analog Circuits Using ARMA Model</atitle><jtitle>International journal of electronics and communications</jtitle><date>2004-01-01</date><risdate>2004</risdate><volume>58</volume><issue>3</issue><spage>212</spage><epage>217</epage><pages>212-217</pages><issn>1434-8411</issn><eissn>1618-0399</eissn><abstract>The paper addresses the problem of fault diagnosis of analog circuits based on dictionary approach. The proposed approach first identifies an adequate set of test frequencies to optimize the process of detection and isolation of simulated fault scenarios. The circuit under test (CUT) is then excited by an input stimulus composed of a set of sinusoidal waveforms with the selected test frequencies. The circuit response, at different fault scenarios, is preprocessed by an autoregressive moving average (ARMA) model to yield a set of features formulating the fault dictionary. Collected features are utilized to train and test a back-propagation (BP) neural network (NN) based classifier. Demonstrative results from soft fault simulation of two active circuit examples prove the excellent effectiveness of the proposed algorithm.</abstract><cop>Stuttgart</cop><pub>Elsevier GmbH</pub><doi>10.1078/1434-8411-54100231</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1434-8411
ispartof International journal of electronics and communications, 2004-01, Vol.58 (3), p.212-217
issn 1434-8411
1618-0399
language eng
recordid cdi_proquest_miscellaneous_32143005
source Elsevier ScienceDirect Journals
subjects ARMA model
Fault diagnosis
Input stimulus
Neural networks
Sensitivity analysis
title Selection of Input Stimulus for Fault Diagnosis of Analog Circuits Using ARMA Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20Input%20Stimulus%20for%20Fault%20Diagnosis%20of%20Analog%20Circuits%20Using%20ARMA%20Model&rft.jtitle=International%20journal%20of%20electronics%20and%20communications&rft.au=Mohsen,%20A.K.%20Adel&rft.date=2004-01-01&rft.volume=58&rft.issue=3&rft.spage=212&rft.epage=217&rft.pages=212-217&rft.issn=1434-8411&rft.eissn=1618-0399&rft_id=info:doi/10.1078/1434-8411-54100231&rft_dat=%3Cproquest_cross%3E670588041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=209257824&rft_id=info:pmid/&rft_els_id=S1434841104702216&rfr_iscdi=true