Selection of Input Stimulus for Fault Diagnosis of Analog Circuits Using ARMA Model
The paper addresses the problem of fault diagnosis of analog circuits based on dictionary approach. The proposed approach first identifies an adequate set of test frequencies to optimize the process of detection and isolation of simulated fault scenarios. The circuit under test (CUT) is then excited...
Gespeichert in:
Veröffentlicht in: | International journal of electronics and communications 2004-01, Vol.58 (3), p.212-217 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 217 |
---|---|
container_issue | 3 |
container_start_page | 212 |
container_title | International journal of electronics and communications |
container_volume | 58 |
creator | Mohsen, A.K. Adel El-Yazeed, M.F. Abu |
description | The paper addresses the problem of fault diagnosis of analog circuits based on dictionary approach. The proposed approach first identifies an adequate set of test frequencies to optimize the process of detection and isolation of simulated fault scenarios. The circuit under test (CUT) is then excited by an input stimulus composed of a set of sinusoidal waveforms with the selected test frequencies. The circuit response, at different fault scenarios, is preprocessed by an autoregressive moving average (ARMA) model to yield a set of features formulating the fault dictionary. Collected features are utilized to train and test a back-propagation (BP) neural network (NN) based classifier. Demonstrative results from soft fault simulation of two active circuit examples prove the excellent effectiveness of the proposed algorithm. |
doi_str_mv | 10.1078/1434-8411-54100231 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32143005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1434841104702216</els_id><sourcerecordid>670588041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-41f755257f5a931503f09d51351d873e93912d33887600f6fd561740181b0b4f3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAkwWA1vAZ8eJI7FUhQJSKyRKZytN7MqVGxc7RuLtcVS6MDDdDd9_uv9D6BrIHZBS3EPO8kzkABnPgRDK4ASNoACREVZVp2k_AufoIoRtQkhJixFaLpVVTW9ch53Gr90-9njZm120MWDtPJ7V0fb40dSbzgUTBmrS1dZt8NT4Jpo-4FUw3QZP3hcTvHCtspfoTNc2qKvfOUar2dPH9CWbvz2_TifzrGG86LMcdMk55aXmdcWAE6ZJ1XJgHFpRMlWxCmjLmBBlQYgudMsLKHMCAtZknWs2RreHu3vvPqMKvdyZ0Chr6065GCSjqTUhPIE3f8Ctiz61CJKSKn0gaJ4geoAa70LwSsu9N7vaf0sgcpAsB4dycCiPklPo4RBSqeeXUV6GxqiuUa3xSatsnfkv_gMWpH5r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>209257824</pqid></control><display><type>article</type><title>Selection of Input Stimulus for Fault Diagnosis of Analog Circuits Using ARMA Model</title><source>Elsevier ScienceDirect Journals</source><creator>Mohsen, A.K. Adel ; El-Yazeed, M.F. Abu</creator><creatorcontrib>Mohsen, A.K. Adel ; El-Yazeed, M.F. Abu</creatorcontrib><description>The paper addresses the problem of fault diagnosis of analog circuits based on dictionary approach. The proposed approach first identifies an adequate set of test frequencies to optimize the process of detection and isolation of simulated fault scenarios. The circuit under test (CUT) is then excited by an input stimulus composed of a set of sinusoidal waveforms with the selected test frequencies. The circuit response, at different fault scenarios, is preprocessed by an autoregressive moving average (ARMA) model to yield a set of features formulating the fault dictionary. Collected features are utilized to train and test a back-propagation (BP) neural network (NN) based classifier. Demonstrative results from soft fault simulation of two active circuit examples prove the excellent effectiveness of the proposed algorithm.</description><identifier>ISSN: 1434-8411</identifier><identifier>EISSN: 1618-0399</identifier><identifier>DOI: 10.1078/1434-8411-54100231</identifier><language>eng</language><publisher>Stuttgart: Elsevier GmbH</publisher><subject>ARMA model ; Fault diagnosis ; Input stimulus ; Neural networks ; Sensitivity analysis</subject><ispartof>International journal of electronics and communications, 2004-01, Vol.58 (3), p.212-217</ispartof><rights>2004 Urban & Fischer Verlag</rights><rights>Copyright Urban & Fischer Verlag 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-41f755257f5a931503f09d51351d873e93912d33887600f6fd561740181b0b4f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1434841104702216$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mohsen, A.K. Adel</creatorcontrib><creatorcontrib>El-Yazeed, M.F. Abu</creatorcontrib><title>Selection of Input Stimulus for Fault Diagnosis of Analog Circuits Using ARMA Model</title><title>International journal of electronics and communications</title><description>The paper addresses the problem of fault diagnosis of analog circuits based on dictionary approach. The proposed approach first identifies an adequate set of test frequencies to optimize the process of detection and isolation of simulated fault scenarios. The circuit under test (CUT) is then excited by an input stimulus composed of a set of sinusoidal waveforms with the selected test frequencies. The circuit response, at different fault scenarios, is preprocessed by an autoregressive moving average (ARMA) model to yield a set of features formulating the fault dictionary. Collected features are utilized to train and test a back-propagation (BP) neural network (NN) based classifier. Demonstrative results from soft fault simulation of two active circuit examples prove the excellent effectiveness of the proposed algorithm.</description><subject>ARMA model</subject><subject>Fault diagnosis</subject><subject>Input stimulus</subject><subject>Neural networks</subject><subject>Sensitivity analysis</subject><issn>1434-8411</issn><issn>1618-0399</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kLFOwzAQhi0EEqXwAkwWA1vAZ8eJI7FUhQJSKyRKZytN7MqVGxc7RuLtcVS6MDDdDd9_uv9D6BrIHZBS3EPO8kzkABnPgRDK4ASNoACREVZVp2k_AufoIoRtQkhJixFaLpVVTW9ch53Gr90-9njZm120MWDtPJ7V0fb40dSbzgUTBmrS1dZt8NT4Jpo-4FUw3QZP3hcTvHCtspfoTNc2qKvfOUar2dPH9CWbvz2_TifzrGG86LMcdMk55aXmdcWAE6ZJ1XJgHFpRMlWxCmjLmBBlQYgudMsLKHMCAtZknWs2RreHu3vvPqMKvdyZ0Chr6065GCSjqTUhPIE3f8Ctiz61CJKSKn0gaJ4geoAa70LwSsu9N7vaf0sgcpAsB4dycCiPklPo4RBSqeeXUV6GxqiuUa3xSatsnfkv_gMWpH5r</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Mohsen, A.K. Adel</creator><creator>El-Yazeed, M.F. Abu</creator><general>Elsevier GmbH</general><general>Urban & Fischer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88F</scope><scope>88K</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M1Q</scope><scope>M2T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20040101</creationdate><title>Selection of Input Stimulus for Fault Diagnosis of Analog Circuits Using ARMA Model</title><author>Mohsen, A.K. Adel ; El-Yazeed, M.F. Abu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-41f755257f5a931503f09d51351d873e93912d33887600f6fd561740181b0b4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>ARMA model</topic><topic>Fault diagnosis</topic><topic>Input stimulus</topic><topic>Neural networks</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohsen, A.K. Adel</creatorcontrib><creatorcontrib>El-Yazeed, M.F. Abu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Military Database</collection><collection>Telecommunications Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of electronics and communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohsen, A.K. Adel</au><au>El-Yazeed, M.F. Abu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of Input Stimulus for Fault Diagnosis of Analog Circuits Using ARMA Model</atitle><jtitle>International journal of electronics and communications</jtitle><date>2004-01-01</date><risdate>2004</risdate><volume>58</volume><issue>3</issue><spage>212</spage><epage>217</epage><pages>212-217</pages><issn>1434-8411</issn><eissn>1618-0399</eissn><abstract>The paper addresses the problem of fault diagnosis of analog circuits based on dictionary approach. The proposed approach first identifies an adequate set of test frequencies to optimize the process of detection and isolation of simulated fault scenarios. The circuit under test (CUT) is then excited by an input stimulus composed of a set of sinusoidal waveforms with the selected test frequencies. The circuit response, at different fault scenarios, is preprocessed by an autoregressive moving average (ARMA) model to yield a set of features formulating the fault dictionary. Collected features are utilized to train and test a back-propagation (BP) neural network (NN) based classifier. Demonstrative results from soft fault simulation of two active circuit examples prove the excellent effectiveness of the proposed algorithm.</abstract><cop>Stuttgart</cop><pub>Elsevier GmbH</pub><doi>10.1078/1434-8411-54100231</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-8411 |
ispartof | International journal of electronics and communications, 2004-01, Vol.58 (3), p.212-217 |
issn | 1434-8411 1618-0399 |
language | eng |
recordid | cdi_proquest_miscellaneous_32143005 |
source | Elsevier ScienceDirect Journals |
subjects | ARMA model Fault diagnosis Input stimulus Neural networks Sensitivity analysis |
title | Selection of Input Stimulus for Fault Diagnosis of Analog Circuits Using ARMA Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20Input%20Stimulus%20for%20Fault%20Diagnosis%20of%20Analog%20Circuits%20Using%20ARMA%20Model&rft.jtitle=International%20journal%20of%20electronics%20and%20communications&rft.au=Mohsen,%20A.K.%20Adel&rft.date=2004-01-01&rft.volume=58&rft.issue=3&rft.spage=212&rft.epage=217&rft.pages=212-217&rft.issn=1434-8411&rft.eissn=1618-0399&rft_id=info:doi/10.1078/1434-8411-54100231&rft_dat=%3Cproquest_cross%3E670588041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=209257824&rft_id=info:pmid/&rft_els_id=S1434841104702216&rfr_iscdi=true |