Design of an adaptive mutation operator in an electrical load management case study

An adequately designed and parameterized set of operators is crucial for an efficient behaviour of Genetic Algorithms (GAs). Several strategies have been adopted in order to better adapt parameters to the problem under resolution and to increase the algorithm's performance. One of these approac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2008-09, Vol.35 (9), p.2925-2936
Hauptverfasser: Gomes, A., Antunes, C. Henggeler, Martins, A. Gomes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2936
container_issue 9
container_start_page 2925
container_title Computers & operations research
container_volume 35
creator Gomes, A.
Antunes, C. Henggeler
Martins, A. Gomes
description An adequately designed and parameterized set of operators is crucial for an efficient behaviour of Genetic Algorithms (GAs). Several strategies have been adopted in order to better adapt parameters to the problem under resolution and to increase the algorithm's performance. One of these approaches consists in using operators presenting a dynamic behaviour, that is displaying a different qualitative behaviour in different stages of the evolutionary process. In this work a comparative analysis of the effects of using an adaptive mutation operator is presented in the operational framework of a multi-objective GA for the design and selection of electrical load management strategies. It is shown that the use of a time/space varying mutation operator depending on the values achieved for each objective function increases the performance of the algorithm.
doi_str_mv 10.1016/j.cor.2007.01.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32006332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054807000123</els_id><sourcerecordid>32006332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-62fbd957bfe2dc16414a7747bc21554e975a91ddcad7d4d9d72aa66cca47f4b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AG9B0Ftr0qZNiyfxGwQPevAWZpOpZGmTNUkF_71ZVjx4cC4Dw_PODA8hJ5yVnPH2YlVqH8qKMVkyXjJW75AF72RdyLZ52yULVrOmYI3o9slBjCuWS1Z8QV5uMNp3R_1AwVEwsE72E-k0J0jW5_kaAyQfqHUbAEfUKVgNIx09GDqBg3ec0CWqISKNaTZfR2RvgDHi8U8_JK93t6_XD8XT8_3j9dVToQVvU9FWw9L0jVwOWBnNW8EFSCnkUle8aQT2soGeG6PBSCNMb2QF0LZag5CDWNaH5Hy7dh38x4wxqclGjeMIDv0cVZ1ttHVdZfD0D7jyc3D5NcX7phNcdixDfAvp4GMMOKh1sBOEL8WZ2ihWK5UVq41ixbjKinPm7GcxxKxkCOC0jb_BjHasq_rMXW45zDY-LQYVtUWn0diQfSrj7T9XvgGeBpFN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195841780</pqid></control><display><type>article</type><title>Design of an adaptive mutation operator in an electrical load management case study</title><source>Elsevier ScienceDirect Journals</source><creator>Gomes, A. ; Antunes, C. Henggeler ; Martins, A. Gomes</creator><creatorcontrib>Gomes, A. ; Antunes, C. Henggeler ; Martins, A. Gomes</creatorcontrib><description>An adequately designed and parameterized set of operators is crucial for an efficient behaviour of Genetic Algorithms (GAs). Several strategies have been adopted in order to better adapt parameters to the problem under resolution and to increase the algorithm's performance. One of these approaches consists in using operators presenting a dynamic behaviour, that is displaying a different qualitative behaviour in different stages of the evolutionary process. In this work a comparative analysis of the effects of using an adaptive mutation operator is presented in the operational framework of a multi-objective GA for the design and selection of electrical load management strategies. It is shown that the use of a time/space varying mutation operator depending on the values achieved for each objective function increases the performance of the algorithm.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2007.01.003</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adaptative systems ; Adaptive control ; Applied sciences ; Comparative analysis ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Genetic algorithms ; Multiobjective optimization ; Mutation ; Operations management ; Studies</subject><ispartof>Computers &amp; operations research, 2008-09, Vol.35 (9), p.2925-2936</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Sep 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-62fbd957bfe2dc16414a7747bc21554e975a91ddcad7d4d9d72aa66cca47f4b3</citedby><cites>FETCH-LOGICAL-c416t-62fbd957bfe2dc16414a7747bc21554e975a91ddcad7d4d9d72aa66cca47f4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0305054807000123$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20080829$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomes, A.</creatorcontrib><creatorcontrib>Antunes, C. Henggeler</creatorcontrib><creatorcontrib>Martins, A. Gomes</creatorcontrib><title>Design of an adaptive mutation operator in an electrical load management case study</title><title>Computers &amp; operations research</title><description>An adequately designed and parameterized set of operators is crucial for an efficient behaviour of Genetic Algorithms (GAs). Several strategies have been adopted in order to better adapt parameters to the problem under resolution and to increase the algorithm's performance. One of these approaches consists in using operators presenting a dynamic behaviour, that is displaying a different qualitative behaviour in different stages of the evolutionary process. In this work a comparative analysis of the effects of using an adaptive mutation operator is presented in the operational framework of a multi-objective GA for the design and selection of electrical load management strategies. It is shown that the use of a time/space varying mutation operator depending on the values achieved for each objective function increases the performance of the algorithm.</description><subject>Adaptative systems</subject><subject>Adaptive control</subject><subject>Applied sciences</subject><subject>Comparative analysis</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Genetic algorithms</subject><subject>Multiobjective optimization</subject><subject>Mutation</subject><subject>Operations management</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AG9B0Ftr0qZNiyfxGwQPevAWZpOpZGmTNUkF_71ZVjx4cC4Dw_PODA8hJ5yVnPH2YlVqH8qKMVkyXjJW75AF72RdyLZ52yULVrOmYI3o9slBjCuWS1Z8QV5uMNp3R_1AwVEwsE72E-k0J0jW5_kaAyQfqHUbAEfUKVgNIx09GDqBg3ec0CWqISKNaTZfR2RvgDHi8U8_JK93t6_XD8XT8_3j9dVToQVvU9FWw9L0jVwOWBnNW8EFSCnkUle8aQT2soGeG6PBSCNMb2QF0LZag5CDWNaH5Hy7dh38x4wxqclGjeMIDv0cVZ1ttHVdZfD0D7jyc3D5NcX7phNcdixDfAvp4GMMOKh1sBOEL8WZ2ihWK5UVq41ixbjKinPm7GcxxKxkCOC0jb_BjHasq_rMXW45zDY-LQYVtUWn0diQfSrj7T9XvgGeBpFN</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Gomes, A.</creator><creator>Antunes, C. Henggeler</creator><creator>Martins, A. Gomes</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080901</creationdate><title>Design of an adaptive mutation operator in an electrical load management case study</title><author>Gomes, A. ; Antunes, C. Henggeler ; Martins, A. Gomes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-62fbd957bfe2dc16414a7747bc21554e975a91ddcad7d4d9d72aa66cca47f4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptative systems</topic><topic>Adaptive control</topic><topic>Applied sciences</topic><topic>Comparative analysis</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Genetic algorithms</topic><topic>Multiobjective optimization</topic><topic>Mutation</topic><topic>Operations management</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomes, A.</creatorcontrib><creatorcontrib>Antunes, C. Henggeler</creatorcontrib><creatorcontrib>Martins, A. Gomes</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomes, A.</au><au>Antunes, C. Henggeler</au><au>Martins, A. Gomes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of an adaptive mutation operator in an electrical load management case study</atitle><jtitle>Computers &amp; operations research</jtitle><date>2008-09-01</date><risdate>2008</risdate><volume>35</volume><issue>9</issue><spage>2925</spage><epage>2936</epage><pages>2925-2936</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>An adequately designed and parameterized set of operators is crucial for an efficient behaviour of Genetic Algorithms (GAs). Several strategies have been adopted in order to better adapt parameters to the problem under resolution and to increase the algorithm's performance. One of these approaches consists in using operators presenting a dynamic behaviour, that is displaying a different qualitative behaviour in different stages of the evolutionary process. In this work a comparative analysis of the effects of using an adaptive mutation operator is presented in the operational framework of a multi-objective GA for the design and selection of electrical load management strategies. It is shown that the use of a time/space varying mutation operator depending on the values achieved for each objective function increases the performance of the algorithm.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2007.01.003</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2008-09, Vol.35 (9), p.2925-2936
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_miscellaneous_32006332
source Elsevier ScienceDirect Journals
subjects Adaptative systems
Adaptive control
Applied sciences
Comparative analysis
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Genetic algorithms
Multiobjective optimization
Mutation
Operations management
Studies
title Design of an adaptive mutation operator in an electrical load management case study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20an%20adaptive%20mutation%20operator%20in%20an%20electrical%20load%20management%20case%20study&rft.jtitle=Computers%20&%20operations%20research&rft.au=Gomes,%20A.&rft.date=2008-09-01&rft.volume=35&rft.issue=9&rft.spage=2925&rft.epage=2936&rft.pages=2925-2936&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2007.01.003&rft_dat=%3Cproquest_cross%3E32006332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195841780&rft_id=info:pmid/&rft_els_id=S0305054807000123&rfr_iscdi=true