Design of an adaptive mutation operator in an electrical load management case study
An adequately designed and parameterized set of operators is crucial for an efficient behaviour of Genetic Algorithms (GAs). Several strategies have been adopted in order to better adapt parameters to the problem under resolution and to increase the algorithm's performance. One of these approac...
Gespeichert in:
Veröffentlicht in: | Computers & operations research 2008-09, Vol.35 (9), p.2925-2936 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2936 |
---|---|
container_issue | 9 |
container_start_page | 2925 |
container_title | Computers & operations research |
container_volume | 35 |
creator | Gomes, A. Antunes, C. Henggeler Martins, A. Gomes |
description | An adequately designed and parameterized set of operators is crucial for an efficient behaviour of Genetic Algorithms (GAs). Several strategies have been adopted in order to better adapt parameters to the problem under resolution and to increase the algorithm's performance. One of these approaches consists in using operators presenting a dynamic behaviour, that is displaying a different qualitative behaviour in different stages of the evolutionary process. In this work a comparative analysis of the effects of using an adaptive mutation operator is presented in the operational framework of a multi-objective GA for the design and selection of electrical load management strategies. It is shown that the use of a time/space varying mutation operator depending on the values achieved for each objective function increases the performance of the algorithm. |
doi_str_mv | 10.1016/j.cor.2007.01.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_32006332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054807000123</els_id><sourcerecordid>32006332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-62fbd957bfe2dc16414a7747bc21554e975a91ddcad7d4d9d72aa66cca47f4b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AG9B0Ftr0qZNiyfxGwQPevAWZpOpZGmTNUkF_71ZVjx4cC4Dw_PODA8hJ5yVnPH2YlVqH8qKMVkyXjJW75AF72RdyLZ52yULVrOmYI3o9slBjCuWS1Z8QV5uMNp3R_1AwVEwsE72E-k0J0jW5_kaAyQfqHUbAEfUKVgNIx09GDqBg3ec0CWqISKNaTZfR2RvgDHi8U8_JK93t6_XD8XT8_3j9dVToQVvU9FWw9L0jVwOWBnNW8EFSCnkUle8aQT2soGeG6PBSCNMb2QF0LZag5CDWNaH5Hy7dh38x4wxqclGjeMIDv0cVZ1ttHVdZfD0D7jyc3D5NcX7phNcdixDfAvp4GMMOKh1sBOEL8WZ2ihWK5UVq41ixbjKinPm7GcxxKxkCOC0jb_BjHasq_rMXW45zDY-LQYVtUWn0diQfSrj7T9XvgGeBpFN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195841780</pqid></control><display><type>article</type><title>Design of an adaptive mutation operator in an electrical load management case study</title><source>Elsevier ScienceDirect Journals</source><creator>Gomes, A. ; Antunes, C. Henggeler ; Martins, A. Gomes</creator><creatorcontrib>Gomes, A. ; Antunes, C. Henggeler ; Martins, A. Gomes</creatorcontrib><description>An adequately designed and parameterized set of operators is crucial for an efficient behaviour of Genetic Algorithms (GAs). Several strategies have been adopted in order to better adapt parameters to the problem under resolution and to increase the algorithm's performance. One of these approaches consists in using operators presenting a dynamic behaviour, that is displaying a different qualitative behaviour in different stages of the evolutionary process. In this work a comparative analysis of the effects of using an adaptive mutation operator is presented in the operational framework of a multi-objective GA for the design and selection of electrical load management strategies. It is shown that the use of a time/space varying mutation operator depending on the values achieved for each objective function increases the performance of the algorithm.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2007.01.003</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adaptative systems ; Adaptive control ; Applied sciences ; Comparative analysis ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Genetic algorithms ; Multiobjective optimization ; Mutation ; Operations management ; Studies</subject><ispartof>Computers & operations research, 2008-09, Vol.35 (9), p.2925-2936</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Sep 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-62fbd957bfe2dc16414a7747bc21554e975a91ddcad7d4d9d72aa66cca47f4b3</citedby><cites>FETCH-LOGICAL-c416t-62fbd957bfe2dc16414a7747bc21554e975a91ddcad7d4d9d72aa66cca47f4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0305054807000123$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20080829$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomes, A.</creatorcontrib><creatorcontrib>Antunes, C. Henggeler</creatorcontrib><creatorcontrib>Martins, A. Gomes</creatorcontrib><title>Design of an adaptive mutation operator in an electrical load management case study</title><title>Computers & operations research</title><description>An adequately designed and parameterized set of operators is crucial for an efficient behaviour of Genetic Algorithms (GAs). Several strategies have been adopted in order to better adapt parameters to the problem under resolution and to increase the algorithm's performance. One of these approaches consists in using operators presenting a dynamic behaviour, that is displaying a different qualitative behaviour in different stages of the evolutionary process. In this work a comparative analysis of the effects of using an adaptive mutation operator is presented in the operational framework of a multi-objective GA for the design and selection of electrical load management strategies. It is shown that the use of a time/space varying mutation operator depending on the values achieved for each objective function increases the performance of the algorithm.</description><subject>Adaptative systems</subject><subject>Adaptive control</subject><subject>Applied sciences</subject><subject>Comparative analysis</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Genetic algorithms</subject><subject>Multiobjective optimization</subject><subject>Mutation</subject><subject>Operations management</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AG9B0Ftr0qZNiyfxGwQPevAWZpOpZGmTNUkF_71ZVjx4cC4Dw_PODA8hJ5yVnPH2YlVqH8qKMVkyXjJW75AF72RdyLZ52yULVrOmYI3o9slBjCuWS1Z8QV5uMNp3R_1AwVEwsE72E-k0J0jW5_kaAyQfqHUbAEfUKVgNIx09GDqBg3ec0CWqISKNaTZfR2RvgDHi8U8_JK93t6_XD8XT8_3j9dVToQVvU9FWw9L0jVwOWBnNW8EFSCnkUle8aQT2soGeG6PBSCNMb2QF0LZag5CDWNaH5Hy7dh38x4wxqclGjeMIDv0cVZ1ttHVdZfD0D7jyc3D5NcX7phNcdixDfAvp4GMMOKh1sBOEL8WZ2ihWK5UVq41ixbjKinPm7GcxxKxkCOC0jb_BjHasq_rMXW45zDY-LQYVtUWn0diQfSrj7T9XvgGeBpFN</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Gomes, A.</creator><creator>Antunes, C. Henggeler</creator><creator>Martins, A. Gomes</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080901</creationdate><title>Design of an adaptive mutation operator in an electrical load management case study</title><author>Gomes, A. ; Antunes, C. Henggeler ; Martins, A. Gomes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-62fbd957bfe2dc16414a7747bc21554e975a91ddcad7d4d9d72aa66cca47f4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptative systems</topic><topic>Adaptive control</topic><topic>Applied sciences</topic><topic>Comparative analysis</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Genetic algorithms</topic><topic>Multiobjective optimization</topic><topic>Mutation</topic><topic>Operations management</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomes, A.</creatorcontrib><creatorcontrib>Antunes, C. Henggeler</creatorcontrib><creatorcontrib>Martins, A. Gomes</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomes, A.</au><au>Antunes, C. Henggeler</au><au>Martins, A. Gomes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of an adaptive mutation operator in an electrical load management case study</atitle><jtitle>Computers & operations research</jtitle><date>2008-09-01</date><risdate>2008</risdate><volume>35</volume><issue>9</issue><spage>2925</spage><epage>2936</epage><pages>2925-2936</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>An adequately designed and parameterized set of operators is crucial for an efficient behaviour of Genetic Algorithms (GAs). Several strategies have been adopted in order to better adapt parameters to the problem under resolution and to increase the algorithm's performance. One of these approaches consists in using operators presenting a dynamic behaviour, that is displaying a different qualitative behaviour in different stages of the evolutionary process. In this work a comparative analysis of the effects of using an adaptive mutation operator is presented in the operational framework of a multi-objective GA for the design and selection of electrical load management strategies. It is shown that the use of a time/space varying mutation operator depending on the values achieved for each objective function increases the performance of the algorithm.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2007.01.003</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0548 |
ispartof | Computers & operations research, 2008-09, Vol.35 (9), p.2925-2936 |
issn | 0305-0548 1873-765X 0305-0548 |
language | eng |
recordid | cdi_proquest_miscellaneous_32006332 |
source | Elsevier ScienceDirect Journals |
subjects | Adaptative systems Adaptive control Applied sciences Comparative analysis Computer science control theory systems Control theory. Systems Exact sciences and technology Genetic algorithms Multiobjective optimization Mutation Operations management Studies |
title | Design of an adaptive mutation operator in an electrical load management case study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20an%20adaptive%20mutation%20operator%20in%20an%20electrical%20load%20management%20case%20study&rft.jtitle=Computers%20&%20operations%20research&rft.au=Gomes,%20A.&rft.date=2008-09-01&rft.volume=35&rft.issue=9&rft.spage=2925&rft.epage=2936&rft.pages=2925-2936&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2007.01.003&rft_dat=%3Cproquest_cross%3E32006332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195841780&rft_id=info:pmid/&rft_els_id=S0305054807000123&rfr_iscdi=true |