The Luttinger-Ward method applied to the 2D Coulomb gas
We review the Luttinger–Ward method and show how one can combine it with the theory of Baym and Kadanoff in order to get conserving approximations in many‐body perturbation theory. We solve the variation procedure numerically using an ansatz for the selfenergy in the case of the two‐ dimensional Cou...
Gespeichert in:
Veröffentlicht in: | Physica Status Solidi (b) 2008-02, Vol.245 (2), p.421-427 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 427 |
---|---|
container_issue | 2 |
container_start_page | 421 |
container_title | Physica Status Solidi (b) |
container_volume | 245 |
creator | Agnihotri, M. P. Apel, W. Weller, W. |
description | We review the Luttinger–Ward method and show how one can combine it with the theory of Baym and Kadanoff in order to get conserving approximations in many‐body perturbation theory. We solve the variation procedure numerically using an ansatz for the selfenergy in the case of the two‐ dimensional Coulomb problem. Comparison with results of the traditional iteration of the selfconsistency equation yields satisfactory agreement for parameters where the iteration converges. The extremalization of the Luttinger–Ward functional works beyond that point. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pssb.200743311 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31897486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31897486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3581-5a5d7a74fa0edb79116e9acb5f202ebe75aff8943b79f500989926d398376db83</originalsourceid><addsrcrecordid>eNqFkDFPwzAQRi0EEqWwMmdiS_HZcRyPUKBFigCphUoslpNc2kBCgp0I-u9JFVSxMd1w733DI-Qc6AQoZZeNc8mEUSoDzgEOyAgEA58rAYdkRLmkPijJjsmJc2-0x4DDiMjlBr24a9viY43WXxmbeRW2mzrzTNOUBWZeW3ttD7Ebb1p3ZV0l3tq4U3KUm9Lh2e8dk-e72-V07sePs_vpVeynXETgCyMyaWSQG4pZIhVAiMqkicgZZZigFCbPIxXw_pcLSlWkFAszriIuwyyJ-JhcDLuNrT87dK2uCpdiWZoPrDunOURKBlHYg5MBTG3tnMVcN7aojN1qoHrXR-_66H2fXlCD8FWUuP2H1k-LxfVf1x_cwrX4vXeNfdeh5FLo1cNMv8wX8Yy9rrTkP14ld74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31897486</pqid></control><display><type>article</type><title>The Luttinger-Ward method applied to the 2D Coulomb gas</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Agnihotri, M. P. ; Apel, W. ; Weller, W.</creator><creatorcontrib>Agnihotri, M. P. ; Apel, W. ; Weller, W.</creatorcontrib><description>We review the Luttinger–Ward method and show how one can combine it with the theory of Baym and Kadanoff in order to get conserving approximations in many‐body perturbation theory. We solve the variation procedure numerically using an ansatz for the selfenergy in the case of the two‐ dimensional Coulomb problem. Comparison with results of the traditional iteration of the selfconsistency equation yields satisfactory agreement for parameters where the iteration converges. The extremalization of the Luttinger–Ward functional works beyond that point. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.200743311</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>05.30.Fk ; 71.10.Ca ; 73.20.-r</subject><ispartof>Physica Status Solidi (b), 2008-02, Vol.245 (2), p.421-427</ispartof><rights>Copyright © 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3581-5a5d7a74fa0edb79116e9acb5f202ebe75aff8943b79f500989926d398376db83</citedby><cites>FETCH-LOGICAL-c3581-5a5d7a74fa0edb79116e9acb5f202ebe75aff8943b79f500989926d398376db83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.200743311$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.200743311$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Agnihotri, M. P.</creatorcontrib><creatorcontrib>Apel, W.</creatorcontrib><creatorcontrib>Weller, W.</creatorcontrib><title>The Luttinger-Ward method applied to the 2D Coulomb gas</title><title>Physica Status Solidi (b)</title><addtitle>phys. stat. sol. (b)</addtitle><description>We review the Luttinger–Ward method and show how one can combine it with the theory of Baym and Kadanoff in order to get conserving approximations in many‐body perturbation theory. We solve the variation procedure numerically using an ansatz for the selfenergy in the case of the two‐ dimensional Coulomb problem. Comparison with results of the traditional iteration of the selfconsistency equation yields satisfactory agreement for parameters where the iteration converges. The extremalization of the Luttinger–Ward functional works beyond that point. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><subject>05.30.Fk</subject><subject>71.10.Ca</subject><subject>73.20.-r</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQRi0EEqWwMmdiS_HZcRyPUKBFigCphUoslpNc2kBCgp0I-u9JFVSxMd1w733DI-Qc6AQoZZeNc8mEUSoDzgEOyAgEA58rAYdkRLmkPijJjsmJc2-0x4DDiMjlBr24a9viY43WXxmbeRW2mzrzTNOUBWZeW3ttD7Ebb1p3ZV0l3tq4U3KUm9Lh2e8dk-e72-V07sePs_vpVeynXETgCyMyaWSQG4pZIhVAiMqkicgZZZigFCbPIxXw_pcLSlWkFAszriIuwyyJ-JhcDLuNrT87dK2uCpdiWZoPrDunOURKBlHYg5MBTG3tnMVcN7aojN1qoHrXR-_66H2fXlCD8FWUuP2H1k-LxfVf1x_cwrX4vXeNfdeh5FLo1cNMv8wX8Yy9rrTkP14ld74</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Agnihotri, M. P.</creator><creator>Apel, W.</creator><creator>Weller, W.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200802</creationdate><title>The Luttinger-Ward method applied to the 2D Coulomb gas</title><author>Agnihotri, M. P. ; Apel, W. ; Weller, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3581-5a5d7a74fa0edb79116e9acb5f202ebe75aff8943b79f500989926d398376db83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>05.30.Fk</topic><topic>71.10.Ca</topic><topic>73.20.-r</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agnihotri, M. P.</creatorcontrib><creatorcontrib>Apel, W.</creatorcontrib><creatorcontrib>Weller, W.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica Status Solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agnihotri, M. P.</au><au>Apel, W.</au><au>Weller, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Luttinger-Ward method applied to the 2D Coulomb gas</atitle><jtitle>Physica Status Solidi (b)</jtitle><addtitle>phys. stat. sol. (b)</addtitle><date>2008-02</date><risdate>2008</risdate><volume>245</volume><issue>2</issue><spage>421</spage><epage>427</epage><pages>421-427</pages><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>We review the Luttinger–Ward method and show how one can combine it with the theory of Baym and Kadanoff in order to get conserving approximations in many‐body perturbation theory. We solve the variation procedure numerically using an ansatz for the selfenergy in the case of the two‐ dimensional Coulomb problem. Comparison with results of the traditional iteration of the selfconsistency equation yields satisfactory agreement for parameters where the iteration converges. The extremalization of the Luttinger–Ward functional works beyond that point. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.200743311</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-1972 |
ispartof | Physica Status Solidi (b), 2008-02, Vol.245 (2), p.421-427 |
issn | 0370-1972 1521-3951 |
language | eng |
recordid | cdi_proquest_miscellaneous_31897486 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 05.30.Fk 71.10.Ca 73.20.-r |
title | The Luttinger-Ward method applied to the 2D Coulomb gas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Luttinger-Ward%20method%20applied%20to%20the%202D%20Coulomb%20gas&rft.jtitle=Physica%20Status%20Solidi%20(b)&rft.au=Agnihotri,%20M.%20P.&rft.date=2008-02&rft.volume=245&rft.issue=2&rft.spage=421&rft.epage=427&rft.pages=421-427&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.200743311&rft_dat=%3Cproquest_cross%3E31897486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31897486&rft_id=info:pmid/&rfr_iscdi=true |