The Luttinger-Ward method applied to the 2D Coulomb gas

We review the Luttinger–Ward method and show how one can combine it with the theory of Baym and Kadanoff in order to get conserving approximations in many‐body perturbation theory. We solve the variation procedure numerically using an ansatz for the selfenergy in the case of the two‐ dimensional Cou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica Status Solidi (b) 2008-02, Vol.245 (2), p.421-427
Hauptverfasser: Agnihotri, M. P., Apel, W., Weller, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 427
container_issue 2
container_start_page 421
container_title Physica Status Solidi (b)
container_volume 245
creator Agnihotri, M. P.
Apel, W.
Weller, W.
description We review the Luttinger–Ward method and show how one can combine it with the theory of Baym and Kadanoff in order to get conserving approximations in many‐body perturbation theory. We solve the variation procedure numerically using an ansatz for the selfenergy in the case of the two‐ dimensional Coulomb problem. Comparison with results of the traditional iteration of the selfconsistency equation yields satisfactory agreement for parameters where the iteration converges. The extremalization of the Luttinger–Ward functional works beyond that point. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pssb.200743311
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31897486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31897486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3581-5a5d7a74fa0edb79116e9acb5f202ebe75aff8943b79f500989926d398376db83</originalsourceid><addsrcrecordid>eNqFkDFPwzAQRi0EEqWwMmdiS_HZcRyPUKBFigCphUoslpNc2kBCgp0I-u9JFVSxMd1w733DI-Qc6AQoZZeNc8mEUSoDzgEOyAgEA58rAYdkRLmkPijJjsmJc2-0x4DDiMjlBr24a9viY43WXxmbeRW2mzrzTNOUBWZeW3ttD7Ebb1p3ZV0l3tq4U3KUm9Lh2e8dk-e72-V07sePs_vpVeynXETgCyMyaWSQG4pZIhVAiMqkicgZZZigFCbPIxXw_pcLSlWkFAszriIuwyyJ-JhcDLuNrT87dK2uCpdiWZoPrDunOURKBlHYg5MBTG3tnMVcN7aojN1qoHrXR-_66H2fXlCD8FWUuP2H1k-LxfVf1x_cwrX4vXeNfdeh5FLo1cNMv8wX8Yy9rrTkP14ld74</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31897486</pqid></control><display><type>article</type><title>The Luttinger-Ward method applied to the 2D Coulomb gas</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Agnihotri, M. P. ; Apel, W. ; Weller, W.</creator><creatorcontrib>Agnihotri, M. P. ; Apel, W. ; Weller, W.</creatorcontrib><description>We review the Luttinger–Ward method and show how one can combine it with the theory of Baym and Kadanoff in order to get conserving approximations in many‐body perturbation theory. We solve the variation procedure numerically using an ansatz for the selfenergy in the case of the two‐ dimensional Coulomb problem. Comparison with results of the traditional iteration of the selfconsistency equation yields satisfactory agreement for parameters where the iteration converges. The extremalization of the Luttinger–Ward functional works beyond that point. (© 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.200743311</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>05.30.Fk ; 71.10.Ca ; 73.20.-r</subject><ispartof>Physica Status Solidi (b), 2008-02, Vol.245 (2), p.421-427</ispartof><rights>Copyright © 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3581-5a5d7a74fa0edb79116e9acb5f202ebe75aff8943b79f500989926d398376db83</citedby><cites>FETCH-LOGICAL-c3581-5a5d7a74fa0edb79116e9acb5f202ebe75aff8943b79f500989926d398376db83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssb.200743311$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssb.200743311$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Agnihotri, M. P.</creatorcontrib><creatorcontrib>Apel, W.</creatorcontrib><creatorcontrib>Weller, W.</creatorcontrib><title>The Luttinger-Ward method applied to the 2D Coulomb gas</title><title>Physica Status Solidi (b)</title><addtitle>phys. stat. sol. (b)</addtitle><description>We review the Luttinger–Ward method and show how one can combine it with the theory of Baym and Kadanoff in order to get conserving approximations in many‐body perturbation theory. We solve the variation procedure numerically using an ansatz for the selfenergy in the case of the two‐ dimensional Coulomb problem. Comparison with results of the traditional iteration of the selfconsistency equation yields satisfactory agreement for parameters where the iteration converges. The extremalization of the Luttinger–Ward functional works beyond that point. (© 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>05.30.Fk</subject><subject>71.10.Ca</subject><subject>73.20.-r</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQRi0EEqWwMmdiS_HZcRyPUKBFigCphUoslpNc2kBCgp0I-u9JFVSxMd1w733DI-Qc6AQoZZeNc8mEUSoDzgEOyAgEA58rAYdkRLmkPijJjsmJc2-0x4DDiMjlBr24a9viY43WXxmbeRW2mzrzTNOUBWZeW3ttD7Ebb1p3ZV0l3tq4U3KUm9Lh2e8dk-e72-V07sePs_vpVeynXETgCyMyaWSQG4pZIhVAiMqkicgZZZigFCbPIxXw_pcLSlWkFAszriIuwyyJ-JhcDLuNrT87dK2uCpdiWZoPrDunOURKBlHYg5MBTG3tnMVcN7aojN1qoHrXR-_66H2fXlCD8FWUuP2H1k-LxfVf1x_cwrX4vXeNfdeh5FLo1cNMv8wX8Yy9rrTkP14ld74</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Agnihotri, M. P.</creator><creator>Apel, W.</creator><creator>Weller, W.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200802</creationdate><title>The Luttinger-Ward method applied to the 2D Coulomb gas</title><author>Agnihotri, M. P. ; Apel, W. ; Weller, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3581-5a5d7a74fa0edb79116e9acb5f202ebe75aff8943b79f500989926d398376db83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>05.30.Fk</topic><topic>71.10.Ca</topic><topic>73.20.-r</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agnihotri, M. P.</creatorcontrib><creatorcontrib>Apel, W.</creatorcontrib><creatorcontrib>Weller, W.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica Status Solidi (b)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agnihotri, M. P.</au><au>Apel, W.</au><au>Weller, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Luttinger-Ward method applied to the 2D Coulomb gas</atitle><jtitle>Physica Status Solidi (b)</jtitle><addtitle>phys. stat. sol. (b)</addtitle><date>2008-02</date><risdate>2008</risdate><volume>245</volume><issue>2</issue><spage>421</spage><epage>427</epage><pages>421-427</pages><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>We review the Luttinger–Ward method and show how one can combine it with the theory of Baym and Kadanoff in order to get conserving approximations in many‐body perturbation theory. We solve the variation procedure numerically using an ansatz for the selfenergy in the case of the two‐ dimensional Coulomb problem. Comparison with results of the traditional iteration of the selfconsistency equation yields satisfactory agreement for parameters where the iteration converges. The extremalization of the Luttinger–Ward functional works beyond that point. (© 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssb.200743311</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof Physica Status Solidi (b), 2008-02, Vol.245 (2), p.421-427
issn 0370-1972
1521-3951
language eng
recordid cdi_proquest_miscellaneous_31897486
source Wiley Online Library Journals Frontfile Complete
subjects 05.30.Fk
71.10.Ca
73.20.-r
title The Luttinger-Ward method applied to the 2D Coulomb gas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Luttinger-Ward%20method%20applied%20to%20the%202D%20Coulomb%20gas&rft.jtitle=Physica%20Status%20Solidi%20(b)&rft.au=Agnihotri,%20M.%20P.&rft.date=2008-02&rft.volume=245&rft.issue=2&rft.spage=421&rft.epage=427&rft.pages=421-427&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.200743311&rft_dat=%3Cproquest_cross%3E31897486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31897486&rft_id=info:pmid/&rfr_iscdi=true