Single scale wavelet approximations in layout optimization
The standard structural layout optimization problem in 2D elasticity is solved using a wavelet based discretization of the displacement field and of the spatial distribution of material. A fictitious domain approach is used to embed the original design domain within a simpler domain of regular geome...
Gespeichert in:
Veröffentlicht in: | Structural Optimization 1999-08, Vol.18 (1), p.1-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Structural Optimization |
container_volume | 18 |
creator | DeRose, G. C. A. D az, A. R. |
description | The standard structural layout optimization problem in 2D elasticity is solved using a wavelet based discretization of the displacement field and of the spatial distribution of material. A fictitious domain approach is used to embed the original design domain within a simpler domain of regular geometry. A Galerkin method is used to derive discretized equations, which are solved iteratively using a preconditioned conjugate gradient algorithm. A special preconditioner is derived for this purpose. The method is shown to converge at rates that are essentially independent of discretization size, an advantage over standard finite element methods, whose convergence rate decays as the mesh is refined. This new approach may replace finite element methods in very large scale problems, where a very fine resolution of the shape is needed. The derivation and examples focus on 2D-problems but extensions to 3D should involve only few changes in the essential features of the procedure. |
doi_str_mv | 10.1007/BF01210686 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31881980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31881980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-96c891a3007a8302681e332a8cb1ea173253898b110d5689a18f55a4f20cded23</originalsourceid><addsrcrecordid>eNpdkMFKxDAQhoMouK5efIKC4EGoZjJtOvGmi6vCggf1XLJpKlm6TW1adX16oysIXmZg-Jj55mfsGPg5cF5cXM85COCS5A6bgIQ8hYxol024wizNsMB9dhDCinMhCqEm7PLRtS-NTYLRsb7rN9vYIdFd1_sPt9aD821IXJs0euPHIfHd4Nbu82d-yPZq3QR79Nun7Hl-8zS7SxcPt_ezq0VqEIohVdKQAo1RTxNyIQksotBklmA1FChyJEVLAF7lkpQGqvNcZ7XgprKVwCk73e6NTq-jDUO5dsHYptGt9WMoEYhAEY_gyT9w5ce-jW6lQMziHS5VpM62lOl9CL2ty66Pn_abEnj5HWL5FyJ-AaYYYhk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334253069</pqid></control><display><type>article</type><title>Single scale wavelet approximations in layout optimization</title><source>SpringerLink Journals - AutoHoldings</source><creator>DeRose, G. C. A. ; D az, A. R.</creator><creatorcontrib>DeRose, G. C. A. ; D az, A. R.</creatorcontrib><description>The standard structural layout optimization problem in 2D elasticity is solved using a wavelet based discretization of the displacement field and of the spatial distribution of material. A fictitious domain approach is used to embed the original design domain within a simpler domain of regular geometry. A Galerkin method is used to derive discretized equations, which are solved iteratively using a preconditioned conjugate gradient algorithm. A special preconditioner is derived for this purpose. The method is shown to converge at rates that are essentially independent of discretization size, an advantage over standard finite element methods, whose convergence rate decays as the mesh is refined. This new approach may replace finite element methods in very large scale problems, where a very fine resolution of the shape is needed. The derivation and examples focus on 2D-problems but extensions to 3D should involve only few changes in the essential features of the procedure.</description><identifier>ISSN: 0934-4373</identifier><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/BF01210686</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algorithms ; Convergence ; Decay rate ; Discretization ; Elasticity ; Finite element method ; Galerkin method ; Layouts ; Optimization ; Spatial distribution ; Very large scale ; Wavelet analysis</subject><ispartof>Structural Optimization, 1999-08, Vol.18 (1), p.1-11</ispartof><rights>Structural optimization is a copyright of Springer, (1999). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-96c891a3007a8302681e332a8cb1ea173253898b110d5689a18f55a4f20cded23</citedby><cites>FETCH-LOGICAL-c317t-96c891a3007a8302681e332a8cb1ea173253898b110d5689a18f55a4f20cded23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>DeRose, G. C. A.</creatorcontrib><creatorcontrib>D az, A. R.</creatorcontrib><title>Single scale wavelet approximations in layout optimization</title><title>Structural Optimization</title><description>The standard structural layout optimization problem in 2D elasticity is solved using a wavelet based discretization of the displacement field and of the spatial distribution of material. A fictitious domain approach is used to embed the original design domain within a simpler domain of regular geometry. A Galerkin method is used to derive discretized equations, which are solved iteratively using a preconditioned conjugate gradient algorithm. A special preconditioner is derived for this purpose. The method is shown to converge at rates that are essentially independent of discretization size, an advantage over standard finite element methods, whose convergence rate decays as the mesh is refined. This new approach may replace finite element methods in very large scale problems, where a very fine resolution of the shape is needed. The derivation and examples focus on 2D-problems but extensions to 3D should involve only few changes in the essential features of the procedure.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Decay rate</subject><subject>Discretization</subject><subject>Elasticity</subject><subject>Finite element method</subject><subject>Galerkin method</subject><subject>Layouts</subject><subject>Optimization</subject><subject>Spatial distribution</subject><subject>Very large scale</subject><subject>Wavelet analysis</subject><issn>0934-4373</issn><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkMFKxDAQhoMouK5efIKC4EGoZjJtOvGmi6vCggf1XLJpKlm6TW1adX16oysIXmZg-Jj55mfsGPg5cF5cXM85COCS5A6bgIQ8hYxol024wizNsMB9dhDCinMhCqEm7PLRtS-NTYLRsb7rN9vYIdFd1_sPt9aD821IXJs0euPHIfHd4Nbu82d-yPZq3QR79Nun7Hl-8zS7SxcPt_ezq0VqEIohVdKQAo1RTxNyIQksotBklmA1FChyJEVLAF7lkpQGqvNcZ7XgprKVwCk73e6NTq-jDUO5dsHYptGt9WMoEYhAEY_gyT9w5ce-jW6lQMziHS5VpM62lOl9CL2ty66Pn_abEnj5HWL5FyJ-AaYYYhk</recordid><startdate>19990801</startdate><enddate>19990801</enddate><creator>DeRose, G. C. A.</creator><creator>D az, A. R.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990801</creationdate><title>Single scale wavelet approximations in layout optimization</title><author>DeRose, G. C. A. ; D az, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-96c891a3007a8302681e332a8cb1ea173253898b110d5689a18f55a4f20cded23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Decay rate</topic><topic>Discretization</topic><topic>Elasticity</topic><topic>Finite element method</topic><topic>Galerkin method</topic><topic>Layouts</topic><topic>Optimization</topic><topic>Spatial distribution</topic><topic>Very large scale</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeRose, G. C. A.</creatorcontrib><creatorcontrib>D az, A. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Structural Optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeRose, G. C. A.</au><au>D az, A. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single scale wavelet approximations in layout optimization</atitle><jtitle>Structural Optimization</jtitle><date>1999-08-01</date><risdate>1999</risdate><volume>18</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0934-4373</issn><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>The standard structural layout optimization problem in 2D elasticity is solved using a wavelet based discretization of the displacement field and of the spatial distribution of material. A fictitious domain approach is used to embed the original design domain within a simpler domain of regular geometry. A Galerkin method is used to derive discretized equations, which are solved iteratively using a preconditioned conjugate gradient algorithm. A special preconditioner is derived for this purpose. The method is shown to converge at rates that are essentially independent of discretization size, an advantage over standard finite element methods, whose convergence rate decays as the mesh is refined. This new approach may replace finite element methods in very large scale problems, where a very fine resolution of the shape is needed. The derivation and examples focus on 2D-problems but extensions to 3D should involve only few changes in the essential features of the procedure.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF01210686</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0934-4373 |
ispartof | Structural Optimization, 1999-08, Vol.18 (1), p.1-11 |
issn | 0934-4373 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_miscellaneous_31881980 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Convergence Decay rate Discretization Elasticity Finite element method Galerkin method Layouts Optimization Spatial distribution Very large scale Wavelet analysis |
title | Single scale wavelet approximations in layout optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A32%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20scale%20wavelet%20approximations%20in%20layout%20optimization&rft.jtitle=Structural%20Optimization&rft.au=DeRose,%20G.%20C.%20A.&rft.date=1999-08-01&rft.volume=18&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0934-4373&rft.eissn=1615-1488&rft_id=info:doi/10.1007/BF01210686&rft_dat=%3Cproquest_cross%3E31881980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334253069&rft_id=info:pmid/&rfr_iscdi=true |