Prediction of fretting crack propagation based on a short crack methodology

Fretting tests have been conducted to determine the maximum crack extension under partial slip conditions, as a function of the applied tangential force amplitude. An analytical elastic model representing a fretting-induced slant crack has been implemented and combined with the Kitagawa–Takahashi sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2008-04, Vol.75 (6), p.1605-1622
Hauptverfasser: Fouvry, S., Nowell, D., Kubiak, K., Hills, D.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1622
container_issue 6
container_start_page 1605
container_title Engineering fracture mechanics
container_volume 75
creator Fouvry, S.
Nowell, D.
Kubiak, K.
Hills, D.A.
description Fretting tests have been conducted to determine the maximum crack extension under partial slip conditions, as a function of the applied tangential force amplitude. An analytical elastic model representing a fretting-induced slant crack has been implemented and combined with the Kitagawa–Takahashi short crack methodology. This approach provides reasonable qualitative agreement between experimental and predicted maximum fretting crack lengths as long as the global response of the interface remains elastic. It confirms the stability of the crack arrest approach to predict the fretting fatigue endurance. It is, however, observed that the model is systematically conservative when significant plastic deformations are generated in the interface. A discussion of the appropriate fundamental parameters when dealing with steep stress gradients such as those present in fretting, and which are difficult to interpret in the context of the Kitagawa–Takahashi method, is presented. It is also shown that the maximum crack length evolution under plain fretting wear test conditions can be used to calibrate fretting fatigue predictions.
doi_str_mv 10.1016/j.engfracmech.2007.06.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31849625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794407002792</els_id><sourcerecordid>31849625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-2ff6cdb7c698e55842d80a72fec8f367352cbbb1cc18f86dd92b3fe694d638a03</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEmPwH8oBbitJ06bpEU18iUlwgHOUOs6W0TUj6ZD278nYhDhysiU_ee08hFwymjPKxM0yx35ug4YVwiIvKK1zKnLK2BEZMVnzSc1ZdUxGlLLUN2V5Ss5iXNIECklH5Pk1oHEwON9n3mY24DC4fp5BivzI1sGv9Vz_TFsd0WSp0Vlc-DAckBUOC2985-fbc3JidRfx4lDH5P3-7m36OJm9PDxNb2cTKJtmmBTWCjBtDaKRWFWyLIykui4sgrRc1LwqoG1bBsCklcKYpmi5RdGURnCpKR-T631uOu9zg3FQKxcBu0736DdRcSbLRhRVAps9CMHHGNCqdXArHbaKUbXTp5bqjz6106eoUElfent1WKIj6C4xPbj4G5BQXki6O2a65zD9-MthUBEc9pCsBoRBGe_-se0b_H2M1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31849625</pqid></control><display><type>article</type><title>Prediction of fretting crack propagation based on a short crack methodology</title><source>Elsevier ScienceDirect Journals</source><creator>Fouvry, S. ; Nowell, D. ; Kubiak, K. ; Hills, D.A.</creator><creatorcontrib>Fouvry, S. ; Nowell, D. ; Kubiak, K. ; Hills, D.A.</creatorcontrib><description>Fretting tests have been conducted to determine the maximum crack extension under partial slip conditions, as a function of the applied tangential force amplitude. An analytical elastic model representing a fretting-induced slant crack has been implemented and combined with the Kitagawa–Takahashi short crack methodology. This approach provides reasonable qualitative agreement between experimental and predicted maximum fretting crack lengths as long as the global response of the interface remains elastic. It confirms the stability of the crack arrest approach to predict the fretting fatigue endurance. It is, however, observed that the model is systematically conservative when significant plastic deformations are generated in the interface. A discussion of the appropriate fundamental parameters when dealing with steep stress gradients such as those present in fretting, and which are difficult to interpret in the context of the Kitagawa–Takahashi method, is presented. It is also shown that the maximum crack length evolution under plain fretting wear test conditions can be used to calibrate fretting fatigue predictions.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2007.06.011</identifier><identifier>CODEN: EFMEAH</identifier><language>eng</language><publisher>Tarrytown, NY: Elsevier Ltd</publisher><subject>AISI 1034 steel ; Applied sciences ; Crack arrest ; Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Fretting cracking ; Friction, wear, lubrication ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Kitagawa–Takahashi diagram ; Machine components ; Mechanical contact (friction...) ; Mechanical engineering. Machine design ; Physics ; Short cracks ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Engineering fracture mechanics, 2008-04, Vol.75 (6), p.1605-1622</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-2ff6cdb7c698e55842d80a72fec8f367352cbbb1cc18f86dd92b3fe694d638a03</citedby><cites>FETCH-LOGICAL-c499t-2ff6cdb7c698e55842d80a72fec8f367352cbbb1cc18f86dd92b3fe694d638a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013794407002792$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20032800$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fouvry, S.</creatorcontrib><creatorcontrib>Nowell, D.</creatorcontrib><creatorcontrib>Kubiak, K.</creatorcontrib><creatorcontrib>Hills, D.A.</creatorcontrib><title>Prediction of fretting crack propagation based on a short crack methodology</title><title>Engineering fracture mechanics</title><description>Fretting tests have been conducted to determine the maximum crack extension under partial slip conditions, as a function of the applied tangential force amplitude. An analytical elastic model representing a fretting-induced slant crack has been implemented and combined with the Kitagawa–Takahashi short crack methodology. This approach provides reasonable qualitative agreement between experimental and predicted maximum fretting crack lengths as long as the global response of the interface remains elastic. It confirms the stability of the crack arrest approach to predict the fretting fatigue endurance. It is, however, observed that the model is systematically conservative when significant plastic deformations are generated in the interface. A discussion of the appropriate fundamental parameters when dealing with steep stress gradients such as those present in fretting, and which are difficult to interpret in the context of the Kitagawa–Takahashi method, is presented. It is also shown that the maximum crack length evolution under plain fretting wear test conditions can be used to calibrate fretting fatigue predictions.</description><subject>AISI 1034 steel</subject><subject>Applied sciences</subject><subject>Crack arrest</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fretting cracking</subject><subject>Friction, wear, lubrication</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Kitagawa–Takahashi diagram</subject><subject>Machine components</subject><subject>Mechanical contact (friction...)</subject><subject>Mechanical engineering. Machine design</subject><subject>Physics</subject><subject>Short cracks</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEEmPwH8oBbitJ06bpEU18iUlwgHOUOs6W0TUj6ZD278nYhDhysiU_ee08hFwymjPKxM0yx35ug4YVwiIvKK1zKnLK2BEZMVnzSc1ZdUxGlLLUN2V5Ss5iXNIECklH5Pk1oHEwON9n3mY24DC4fp5BivzI1sGv9Vz_TFsd0WSp0Vlc-DAckBUOC2985-fbc3JidRfx4lDH5P3-7m36OJm9PDxNb2cTKJtmmBTWCjBtDaKRWFWyLIykui4sgrRc1LwqoG1bBsCklcKYpmi5RdGURnCpKR-T631uOu9zg3FQKxcBu0736DdRcSbLRhRVAps9CMHHGNCqdXArHbaKUbXTp5bqjz6106eoUElfent1WKIj6C4xPbj4G5BQXki6O2a65zD9-MthUBEc9pCsBoRBGe_-se0b_H2M1Q</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Fouvry, S.</creator><creator>Nowell, D.</creator><creator>Kubiak, K.</creator><creator>Hills, D.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20080401</creationdate><title>Prediction of fretting crack propagation based on a short crack methodology</title><author>Fouvry, S. ; Nowell, D. ; Kubiak, K. ; Hills, D.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-2ff6cdb7c698e55842d80a72fec8f367352cbbb1cc18f86dd92b3fe694d638a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>AISI 1034 steel</topic><topic>Applied sciences</topic><topic>Crack arrest</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fretting cracking</topic><topic>Friction, wear, lubrication</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Kitagawa–Takahashi diagram</topic><topic>Machine components</topic><topic>Mechanical contact (friction...)</topic><topic>Mechanical engineering. Machine design</topic><topic>Physics</topic><topic>Short cracks</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fouvry, S.</creatorcontrib><creatorcontrib>Nowell, D.</creatorcontrib><creatorcontrib>Kubiak, K.</creatorcontrib><creatorcontrib>Hills, D.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fouvry, S.</au><au>Nowell, D.</au><au>Kubiak, K.</au><au>Hills, D.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of fretting crack propagation based on a short crack methodology</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>75</volume><issue>6</issue><spage>1605</spage><epage>1622</epage><pages>1605-1622</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><coden>EFMEAH</coden><abstract>Fretting tests have been conducted to determine the maximum crack extension under partial slip conditions, as a function of the applied tangential force amplitude. An analytical elastic model representing a fretting-induced slant crack has been implemented and combined with the Kitagawa–Takahashi short crack methodology. This approach provides reasonable qualitative agreement between experimental and predicted maximum fretting crack lengths as long as the global response of the interface remains elastic. It confirms the stability of the crack arrest approach to predict the fretting fatigue endurance. It is, however, observed that the model is systematically conservative when significant plastic deformations are generated in the interface. A discussion of the appropriate fundamental parameters when dealing with steep stress gradients such as those present in fretting, and which are difficult to interpret in the context of the Kitagawa–Takahashi method, is presented. It is also shown that the maximum crack length evolution under plain fretting wear test conditions can be used to calibrate fretting fatigue predictions.</abstract><cop>Tarrytown, NY</cop><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2007.06.011</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2008-04, Vol.75 (6), p.1605-1622
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_miscellaneous_31849625
source Elsevier ScienceDirect Journals
subjects AISI 1034 steel
Applied sciences
Crack arrest
Exact sciences and technology
Fracture mechanics (crack, fatigue, damage...)
Fretting cracking
Friction, wear, lubrication
Fundamental areas of phenomenology (including applications)
Inelasticity (thermoplasticity, viscoplasticity...)
Kitagawa–Takahashi diagram
Machine components
Mechanical contact (friction...)
Mechanical engineering. Machine design
Physics
Short cracks
Solid mechanics
Structural and continuum mechanics
title Prediction of fretting crack propagation based on a short crack methodology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20fretting%20crack%20propagation%20based%20on%20a%20short%20crack%20methodology&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Fouvry,%20S.&rft.date=2008-04-01&rft.volume=75&rft.issue=6&rft.spage=1605&rft.epage=1622&rft.pages=1605-1622&rft.issn=0013-7944&rft.eissn=1873-7315&rft.coden=EFMEAH&rft_id=info:doi/10.1016/j.engfracmech.2007.06.011&rft_dat=%3Cproquest_cross%3E31849625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31849625&rft_id=info:pmid/&rft_els_id=S0013794407002792&rfr_iscdi=true