Prediction and Optimization of Mechanical Properties of Polypropylene/Waste Tire Powder Blends using a Hybrid Artificial Neural Network-Genetic Algorithm (GA-ANN)

Blends of Polypropylene (PP) and waste ground rubber tire powder are studied with respect to the effect of ethylene—propylene—diene monomer (EPDM) and polypropylene grafted maleic anhydride (PP-g-MA) compatibilizer content by using the Design of Experiments methodology, whereby the effect of the fou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermoplastic composite materials 2008-01, Vol.21 (1), p.51-69
Hauptverfasser: Balasubramanian, Maridass, Paglicawan, Marissa A., Zhang, Zhen-Xiu, Sung Hyo Lee, Xin, Zhen-Xiang, Jin Kuk Kim
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 1
container_start_page 51
container_title Journal of thermoplastic composite materials
container_volume 21
creator Balasubramanian, Maridass
Paglicawan, Marissa A.
Zhang, Zhen-Xiu
Sung Hyo Lee
Xin, Zhen-Xiang
Jin Kuk Kim
description Blends of Polypropylene (PP) and waste ground rubber tire powder are studied with respect to the effect of ethylene—propylene—diene monomer (EPDM) and polypropylene grafted maleic anhydride (PP-g-MA) compatibilizer content by using the Design of Experiments methodology, whereby the effect of the four polymers content on the final mechanical properties are predicted. Uniform design method is especially adopted for its advantages. Optimization is done using hybrid Artificial Neural Network-Genetic Algorithm technique. A rubber formulary with respect to the four ingredients are optimized having maximum tensile strength and then compared with a blend predicted to have maximum elongation at break. It is concluded that the blends show fairly good properties provided that it has a relatively higher concentration of PP-g-MA and EPDM content. SEM investigations also corroborates with the observed mechanical properties. A quantitative relationship is then shown between the material concentration and the mechanical properties as a set of contour plots, which are then tested and confirmed experimentally to conform to the optimum blend ratio.
doi_str_mv 10.1177/0892705707084543
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31848617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0892705707084543</sage_id><sourcerecordid>31463790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-682c6797b28a228fa0f4a2d097547f9739c6b2aded0f3b81f963f322e5ec2683</originalsourceid><addsrcrecordid>eNqNUc1LwzAcDaLg_Lh7zEn0UE2TtkmPVXQTdNth4LFk6S8z2jUzSRnzz_EvNXOeBMHTg_cFj4fQWUqu0pTzayJKyknOCSciyzO2hwZpzkjCS0H20WArJ1v9EB15_0oIYVTkA_Q5ddAYFYztsOwaPFkFszQf8puwGj-BepGdUbLFU2dX4IIBvxWmtt2sIrNpoYPrZ-kD4JlxEIV1Aw7fRL7xuPemW2CJR5u5Mw2uYl4bZWLdGHr3DWFt3VsyjDXBKFy1C-tMeFnii2GVVOPx5Qk60LL1cPqDx2h2fze7HSWPk-HDbfWYKCaykBSCqoKXfE6FpFRoSXQmaUNKnmdcl5yVqphT2UBDNJuLVJcF04xSyEHRQrBjdL6rjavee_ChXhqvoG1lB7b3NUtFJoqU_8OYFYyXJBrJzqic9d6BrlfOLKXb1Cmpt6fVv0-LkWQX8XIB9avtXRcn_-3_AiP9mFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31463790</pqid></control><display><type>article</type><title>Prediction and Optimization of Mechanical Properties of Polypropylene/Waste Tire Powder Blends using a Hybrid Artificial Neural Network-Genetic Algorithm (GA-ANN)</title><source>SAGE Complete A-Z List</source><creator>Balasubramanian, Maridass ; Paglicawan, Marissa A. ; Zhang, Zhen-Xiu ; Sung Hyo Lee ; Xin, Zhen-Xiang ; Jin Kuk Kim</creator><creatorcontrib>Balasubramanian, Maridass ; Paglicawan, Marissa A. ; Zhang, Zhen-Xiu ; Sung Hyo Lee ; Xin, Zhen-Xiang ; Jin Kuk Kim</creatorcontrib><description>Blends of Polypropylene (PP) and waste ground rubber tire powder are studied with respect to the effect of ethylene—propylene—diene monomer (EPDM) and polypropylene grafted maleic anhydride (PP-g-MA) compatibilizer content by using the Design of Experiments methodology, whereby the effect of the four polymers content on the final mechanical properties are predicted. Uniform design method is especially adopted for its advantages. Optimization is done using hybrid Artificial Neural Network-Genetic Algorithm technique. A rubber formulary with respect to the four ingredients are optimized having maximum tensile strength and then compared with a blend predicted to have maximum elongation at break. It is concluded that the blends show fairly good properties provided that it has a relatively higher concentration of PP-g-MA and EPDM content. SEM investigations also corroborates with the observed mechanical properties. A quantitative relationship is then shown between the material concentration and the mechanical properties as a set of contour plots, which are then tested and confirmed experimentally to conform to the optimum blend ratio.</description><identifier>ISSN: 0892-7057</identifier><identifier>EISSN: 1530-7980</identifier><identifier>DOI: 10.1177/0892705707084543</identifier><language>eng</language><publisher>London, England: Sage Publications</publisher><ispartof>Journal of thermoplastic composite materials, 2008-01, Vol.21 (1), p.51-69</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-682c6797b28a228fa0f4a2d097547f9739c6b2aded0f3b81f963f322e5ec2683</citedby><cites>FETCH-LOGICAL-c384t-682c6797b28a228fa0f4a2d097547f9739c6b2aded0f3b81f963f322e5ec2683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0892705707084543$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0892705707084543$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,43620,43621</link.rule.ids></links><search><creatorcontrib>Balasubramanian, Maridass</creatorcontrib><creatorcontrib>Paglicawan, Marissa A.</creatorcontrib><creatorcontrib>Zhang, Zhen-Xiu</creatorcontrib><creatorcontrib>Sung Hyo Lee</creatorcontrib><creatorcontrib>Xin, Zhen-Xiang</creatorcontrib><creatorcontrib>Jin Kuk Kim</creatorcontrib><title>Prediction and Optimization of Mechanical Properties of Polypropylene/Waste Tire Powder Blends using a Hybrid Artificial Neural Network-Genetic Algorithm (GA-ANN)</title><title>Journal of thermoplastic composite materials</title><description>Blends of Polypropylene (PP) and waste ground rubber tire powder are studied with respect to the effect of ethylene—propylene—diene monomer (EPDM) and polypropylene grafted maleic anhydride (PP-g-MA) compatibilizer content by using the Design of Experiments methodology, whereby the effect of the four polymers content on the final mechanical properties are predicted. Uniform design method is especially adopted for its advantages. Optimization is done using hybrid Artificial Neural Network-Genetic Algorithm technique. A rubber formulary with respect to the four ingredients are optimized having maximum tensile strength and then compared with a blend predicted to have maximum elongation at break. It is concluded that the blends show fairly good properties provided that it has a relatively higher concentration of PP-g-MA and EPDM content. SEM investigations also corroborates with the observed mechanical properties. A quantitative relationship is then shown between the material concentration and the mechanical properties as a set of contour plots, which are then tested and confirmed experimentally to conform to the optimum blend ratio.</description><issn>0892-7057</issn><issn>1530-7980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNUc1LwzAcDaLg_Lh7zEn0UE2TtkmPVXQTdNth4LFk6S8z2jUzSRnzz_EvNXOeBMHTg_cFj4fQWUqu0pTzayJKyknOCSciyzO2hwZpzkjCS0H20WArJ1v9EB15_0oIYVTkA_Q5ddAYFYztsOwaPFkFszQf8puwGj-BepGdUbLFU2dX4IIBvxWmtt2sIrNpoYPrZ-kD4JlxEIV1Aw7fRL7xuPemW2CJR5u5Mw2uYl4bZWLdGHr3DWFt3VsyjDXBKFy1C-tMeFnii2GVVOPx5Qk60LL1cPqDx2h2fze7HSWPk-HDbfWYKCaykBSCqoKXfE6FpFRoSXQmaUNKnmdcl5yVqphT2UBDNJuLVJcF04xSyEHRQrBjdL6rjavee_ChXhqvoG1lB7b3NUtFJoqU_8OYFYyXJBrJzqic9d6BrlfOLKXb1Cmpt6fVv0-LkWQX8XIB9avtXRcn_-3_AiP9mFY</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Balasubramanian, Maridass</creator><creator>Paglicawan, Marissa A.</creator><creator>Zhang, Zhen-Xiu</creator><creator>Sung Hyo Lee</creator><creator>Xin, Zhen-Xiang</creator><creator>Jin Kuk Kim</creator><general>Sage Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>200801</creationdate><title>Prediction and Optimization of Mechanical Properties of Polypropylene/Waste Tire Powder Blends using a Hybrid Artificial Neural Network-Genetic Algorithm (GA-ANN)</title><author>Balasubramanian, Maridass ; Paglicawan, Marissa A. ; Zhang, Zhen-Xiu ; Sung Hyo Lee ; Xin, Zhen-Xiang ; Jin Kuk Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-682c6797b28a228fa0f4a2d097547f9739c6b2aded0f3b81f963f322e5ec2683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balasubramanian, Maridass</creatorcontrib><creatorcontrib>Paglicawan, Marissa A.</creatorcontrib><creatorcontrib>Zhang, Zhen-Xiu</creatorcontrib><creatorcontrib>Sung Hyo Lee</creatorcontrib><creatorcontrib>Xin, Zhen-Xiang</creatorcontrib><creatorcontrib>Jin Kuk Kim</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of thermoplastic composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balasubramanian, Maridass</au><au>Paglicawan, Marissa A.</au><au>Zhang, Zhen-Xiu</au><au>Sung Hyo Lee</au><au>Xin, Zhen-Xiang</au><au>Jin Kuk Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction and Optimization of Mechanical Properties of Polypropylene/Waste Tire Powder Blends using a Hybrid Artificial Neural Network-Genetic Algorithm (GA-ANN)</atitle><jtitle>Journal of thermoplastic composite materials</jtitle><date>2008-01</date><risdate>2008</risdate><volume>21</volume><issue>1</issue><spage>51</spage><epage>69</epage><pages>51-69</pages><issn>0892-7057</issn><eissn>1530-7980</eissn><abstract>Blends of Polypropylene (PP) and waste ground rubber tire powder are studied with respect to the effect of ethylene—propylene—diene monomer (EPDM) and polypropylene grafted maleic anhydride (PP-g-MA) compatibilizer content by using the Design of Experiments methodology, whereby the effect of the four polymers content on the final mechanical properties are predicted. Uniform design method is especially adopted for its advantages. Optimization is done using hybrid Artificial Neural Network-Genetic Algorithm technique. A rubber formulary with respect to the four ingredients are optimized having maximum tensile strength and then compared with a blend predicted to have maximum elongation at break. It is concluded that the blends show fairly good properties provided that it has a relatively higher concentration of PP-g-MA and EPDM content. SEM investigations also corroborates with the observed mechanical properties. A quantitative relationship is then shown between the material concentration and the mechanical properties as a set of contour plots, which are then tested and confirmed experimentally to conform to the optimum blend ratio.</abstract><cop>London, England</cop><pub>Sage Publications</pub><doi>10.1177/0892705707084543</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0892-7057
ispartof Journal of thermoplastic composite materials, 2008-01, Vol.21 (1), p.51-69
issn 0892-7057
1530-7980
language eng
recordid cdi_proquest_miscellaneous_31848617
source SAGE Complete A-Z List
title Prediction and Optimization of Mechanical Properties of Polypropylene/Waste Tire Powder Blends using a Hybrid Artificial Neural Network-Genetic Algorithm (GA-ANN)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A16%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20and%20Optimization%20of%20Mechanical%20Properties%20of%20Polypropylene/Waste%20Tire%20Powder%20Blends%20using%20a%20Hybrid%20Artificial%20Neural%20Network-Genetic%20Algorithm%20(GA-ANN)&rft.jtitle=Journal%20of%20thermoplastic%20composite%20materials&rft.au=Balasubramanian,%20Maridass&rft.date=2008-01&rft.volume=21&rft.issue=1&rft.spage=51&rft.epage=69&rft.pages=51-69&rft.issn=0892-7057&rft.eissn=1530-7980&rft_id=info:doi/10.1177/0892705707084543&rft_dat=%3Cproquest_cross%3E31463790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31463790&rft_id=info:pmid/&rft_sage_id=10.1177_0892705707084543&rfr_iscdi=true