Application of joint error maximum mutual compensation for hexapod robots

A good practice to ensure high-positioning accuracy in industrial robots is to use joint error maximum mutual compensation (JEMMC). This paper presents an application of JEMMC for positioning of hexapod robots to improve end-effector positioning accuracy. We developed an algorithm and simulation fra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotica 2008-01, Vol.26 (1), p.63-73
Hauptverfasser: Veryha, Yauheni, Petersen, Henrik Gordon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 1
container_start_page 63
container_title Robotica
container_volume 26
creator Veryha, Yauheni
Petersen, Henrik Gordon
description A good practice to ensure high-positioning accuracy in industrial robots is to use joint error maximum mutual compensation (JEMMC). This paper presents an application of JEMMC for positioning of hexapod robots to improve end-effector positioning accuracy. We developed an algorithm and simulation framework in MatLab to find optimal hexapod configurations with JEMMC. Based on a real hexapod model, simulation results of the proposed approach are presented. Optimal hexapod configurations were found using the local minimum of the infinity norm of hexapod Jacobian inverse. JEMMC usage in hexapod robots can improve hexapod end-effector positioning accuracy by two times and more.
doi_str_mv 10.1017/S0263574707003591
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31836681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263574707003591</cupid><sourcerecordid>1453545751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-1b6d43a7096c8ef3b6d2af0a72fa47309a1ae8b371240c80955d5f1790d574763</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG_Fg7dqpmmT9rgsWhcXRFbPIdsmmrVpatLC-u9NqSgonobwvjfz8hA6B3wFGNj1BieUZCxlmGFMsgIO0AxSWsQ5pfkhmo1yPOrH6MT7HcZAIGUztFp0XaMr0WvbRlZFO6vbPpLOWRcZsddmMJEZ-kE0UWVNJ1s_oSror3IvOltHzm5t70_RkRKNl2dfc46eb2-elnfx-qFcLRfruCKE9TFsaZ0SwXBBq1wqEp6JUFiwRImUEVwIEDLfEgZJiqscF1lWZwpYgesxPiVzdDnt7Zx9H6TvudG-kk0jWmkHzwnkJPwZAnjxC9zZwbUhG08ACgjNJAGCCaqc9d5JxTunjXAfHDAfm-V_mg2eePJo38v9t0G4N04ZYRmn5SO_hyUtaYn5JvDk64YwW6frF_mT5P8rn4NziMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211918662</pqid></control><display><type>article</type><title>Application of joint error maximum mutual compensation for hexapod robots</title><source>Cambridge Journals</source><creator>Veryha, Yauheni ; Petersen, Henrik Gordon</creator><creatorcontrib>Veryha, Yauheni ; Petersen, Henrik Gordon</creatorcontrib><description>A good practice to ensure high-positioning accuracy in industrial robots is to use joint error maximum mutual compensation (JEMMC). This paper presents an application of JEMMC for positioning of hexapod robots to improve end-effector positioning accuracy. We developed an algorithm and simulation framework in MatLab to find optimal hexapod configurations with JEMMC. Based on a real hexapod model, simulation results of the proposed approach are presented. Optimal hexapod configurations were found using the local minimum of the infinity norm of hexapod Jacobian inverse. JEMMC usage in hexapod robots can improve hexapod end-effector positioning accuracy by two times and more.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S0263574707003591</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Hexapod ; Joint error maximum mutual compensation ; Positioning accuracy ; Robot calibration ; Worst-case error</subject><ispartof>Robotica, 2008-01, Vol.26 (1), p.63-73</ispartof><rights>Copyright © Cambridge University Press 2007</rights><rights>Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c337t-1b6d43a7096c8ef3b6d2af0a72fa47309a1ae8b371240c80955d5f1790d574763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263574707003591/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,4010,27900,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Veryha, Yauheni</creatorcontrib><creatorcontrib>Petersen, Henrik Gordon</creatorcontrib><title>Application of joint error maximum mutual compensation for hexapod robots</title><title>Robotica</title><addtitle>Robotica</addtitle><description>A good practice to ensure high-positioning accuracy in industrial robots is to use joint error maximum mutual compensation (JEMMC). This paper presents an application of JEMMC for positioning of hexapod robots to improve end-effector positioning accuracy. We developed an algorithm and simulation framework in MatLab to find optimal hexapod configurations with JEMMC. Based on a real hexapod model, simulation results of the proposed approach are presented. Optimal hexapod configurations were found using the local minimum of the infinity norm of hexapod Jacobian inverse. JEMMC usage in hexapod robots can improve hexapod end-effector positioning accuracy by two times and more.</description><subject>Hexapod</subject><subject>Joint error maximum mutual compensation</subject><subject>Positioning accuracy</subject><subject>Robot calibration</subject><subject>Worst-case error</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEFLxDAQhYMouK7-AG_Fg7dqpmmT9rgsWhcXRFbPIdsmmrVpatLC-u9NqSgonobwvjfz8hA6B3wFGNj1BieUZCxlmGFMsgIO0AxSWsQ5pfkhmo1yPOrH6MT7HcZAIGUztFp0XaMr0WvbRlZFO6vbPpLOWRcZsddmMJEZ-kE0UWVNJ1s_oSror3IvOltHzm5t70_RkRKNl2dfc46eb2-elnfx-qFcLRfruCKE9TFsaZ0SwXBBq1wqEp6JUFiwRImUEVwIEDLfEgZJiqscF1lWZwpYgesxPiVzdDnt7Zx9H6TvudG-kk0jWmkHzwnkJPwZAnjxC9zZwbUhG08ACgjNJAGCCaqc9d5JxTunjXAfHDAfm-V_mg2eePJo38v9t0G4N04ZYRmn5SO_hyUtaYn5JvDk64YwW6frF_mT5P8rn4NziMg</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Veryha, Yauheni</creator><creator>Petersen, Henrik Gordon</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200801</creationdate><title>Application of joint error maximum mutual compensation for hexapod robots</title><author>Veryha, Yauheni ; Petersen, Henrik Gordon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-1b6d43a7096c8ef3b6d2af0a72fa47309a1ae8b371240c80955d5f1790d574763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Hexapod</topic><topic>Joint error maximum mutual compensation</topic><topic>Positioning accuracy</topic><topic>Robot calibration</topic><topic>Worst-case error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veryha, Yauheni</creatorcontrib><creatorcontrib>Petersen, Henrik Gordon</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veryha, Yauheni</au><au>Petersen, Henrik Gordon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of joint error maximum mutual compensation for hexapod robots</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2008-01</date><risdate>2008</risdate><volume>26</volume><issue>1</issue><spage>63</spage><epage>73</epage><pages>63-73</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>A good practice to ensure high-positioning accuracy in industrial robots is to use joint error maximum mutual compensation (JEMMC). This paper presents an application of JEMMC for positioning of hexapod robots to improve end-effector positioning accuracy. We developed an algorithm and simulation framework in MatLab to find optimal hexapod configurations with JEMMC. Based on a real hexapod model, simulation results of the proposed approach are presented. Optimal hexapod configurations were found using the local minimum of the infinity norm of hexapod Jacobian inverse. JEMMC usage in hexapod robots can improve hexapod end-effector positioning accuracy by two times and more.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263574707003591</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-5747
ispartof Robotica, 2008-01, Vol.26 (1), p.63-73
issn 0263-5747
1469-8668
language eng
recordid cdi_proquest_miscellaneous_31836681
source Cambridge Journals
subjects Hexapod
Joint error maximum mutual compensation
Positioning accuracy
Robot calibration
Worst-case error
title Application of joint error maximum mutual compensation for hexapod robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20joint%20error%20maximum%20mutual%20compensation%20for%20hexapod%20robots&rft.jtitle=Robotica&rft.au=Veryha,%20Yauheni&rft.date=2008-01&rft.volume=26&rft.issue=1&rft.spage=63&rft.epage=73&rft.pages=63-73&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S0263574707003591&rft_dat=%3Cproquest_cross%3E1453545751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211918662&rft_id=info:pmid/&rft_cupid=10_1017_S0263574707003591&rfr_iscdi=true