A numerical approach to quantify self-ordering among self-organized nanostructures
The geometrical layout in two-dimensional arrays of self-organized nanostructures is usually not completely ordered, nor completely disordered. The ability to quantify a degree of order gives significant insight in nanoscale self-organization processes. We address this issue analytically. We first s...
Gespeichert in:
Veröffentlicht in: | Surface science 2008, Vol.602 (1), p.249-258 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 258 |
---|---|
container_issue | 1 |
container_start_page | 249 |
container_title | Surface science |
container_volume | 602 |
creator | Ratto, F. Johnston, T.W. Heun, S. Rosei, F. |
description | The geometrical layout in two-dimensional arrays of self-organized nanostructures is usually not completely ordered, nor completely disordered. The ability to quantify a degree of order gives significant insight in nanoscale self-organization processes. We address this issue analytically. We first simulate the arrangement of nuclei in two-dimensional lattices with mixed order/disorder, as defined by a suitable order parameter. We focus on statistical properties of the local environment of the simulated nuclei. Finally, we compare this statistical analysis with results from actual experimental images. Here we test our analysis with the Ge/Si(1
1
1) model system. Our approach reveals a significant tendency towards self-ordering in this system, which is primarily attributed to
Brownian nucleation and capture dynamics. |
doi_str_mv | 10.1016/j.susc.2007.10.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31834723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039602807010357</els_id><sourcerecordid>31834723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-ef07407ff72c15f8c2621448a62c1d9067726cdc763ea1839c113eb1f8e376043</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVfd6K41jzZpwc0w-IIBQXQdYnozZmiTmaQVxl9vygwuzSLhHr5z781B6JrggmDC7zZFHKMuKMYiCQWm1QmakVo0ORVVfYpmGLMm55jW5-gixg1Op2yqGXpbZG7sIVitukxtt8Er_ZUNPtuNyg3W7LMIncl9aBPj1pnqfbqP2lo5-wNt5pTzcQijHsYA8RKdGdVFuDq-c_Tx-PC-fM5Xr08vy8Uq14yTIQeDRYmFMYJqUplaU05JWdaKp7ptMBeCct1qwRkoUrNGE8Lgk5gamOC4ZHN0e-iblt6NEAfZ26ih65QDP0bJkqkUlCWQHkAdfIwBjNwG26uwlwTLKT65kVN8copv0lJ8yXRz7K5iysYE5bSNf86EJqriibs_cJC--m0hyKgtOA2tDaAH2Xr735hfKPOGfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31834723</pqid></control><display><type>article</type><title>A numerical approach to quantify self-ordering among self-organized nanostructures</title><source>Elsevier ScienceDirect Journals</source><creator>Ratto, F. ; Johnston, T.W. ; Heun, S. ; Rosei, F.</creator><creatorcontrib>Ratto, F. ; Johnston, T.W. ; Heun, S. ; Rosei, F.</creatorcontrib><description>The geometrical layout in two-dimensional arrays of self-organized nanostructures is usually not completely ordered, nor completely disordered. The ability to quantify a degree of order gives significant insight in nanoscale self-organization processes. We address this issue analytically. We first simulate the arrangement of nuclei in two-dimensional lattices with mixed order/disorder, as defined by a suitable order parameter. We focus on statistical properties of the local environment of the simulated nuclei. Finally, we compare this statistical analysis with results from actual experimental images. Here we test our analysis with the Ge/Si(1
1
1) model system. Our approach reveals a significant tendency towards self-ordering in this system, which is primarily attributed to
Brownian nucleation and capture dynamics.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2007.10.025</identifier><identifier>CODEN: SUSCAS</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Growth ; In situ characterization ; Low-energy electron microscopy (LEEM) ; Monte Carlo simulations ; Nanostructures ; Nucleation ; Physics ; Semiconductor–semiconductor heterostructures ; Silicon–germanium</subject><ispartof>Surface science, 2008, Vol.602 (1), p.249-258</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-ef07407ff72c15f8c2621448a62c1d9067726cdc763ea1839c113eb1f8e376043</citedby><cites>FETCH-LOGICAL-c361t-ef07407ff72c15f8c2621448a62c1d9067726cdc763ea1839c113eb1f8e376043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0039602807010357$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20002556$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ratto, F.</creatorcontrib><creatorcontrib>Johnston, T.W.</creatorcontrib><creatorcontrib>Heun, S.</creatorcontrib><creatorcontrib>Rosei, F.</creatorcontrib><title>A numerical approach to quantify self-ordering among self-organized nanostructures</title><title>Surface science</title><description>The geometrical layout in two-dimensional arrays of self-organized nanostructures is usually not completely ordered, nor completely disordered. The ability to quantify a degree of order gives significant insight in nanoscale self-organization processes. We address this issue analytically. We first simulate the arrangement of nuclei in two-dimensional lattices with mixed order/disorder, as defined by a suitable order parameter. We focus on statistical properties of the local environment of the simulated nuclei. Finally, we compare this statistical analysis with results from actual experimental images. Here we test our analysis with the Ge/Si(1
1
1) model system. Our approach reveals a significant tendency towards self-ordering in this system, which is primarily attributed to
Brownian nucleation and capture dynamics.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Growth</subject><subject>In situ characterization</subject><subject>Low-energy electron microscopy (LEEM)</subject><subject>Monte Carlo simulations</subject><subject>Nanostructures</subject><subject>Nucleation</subject><subject>Physics</subject><subject>Semiconductor–semiconductor heterostructures</subject><subject>Silicon–germanium</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVfd6K41jzZpwc0w-IIBQXQdYnozZmiTmaQVxl9vygwuzSLhHr5z781B6JrggmDC7zZFHKMuKMYiCQWm1QmakVo0ORVVfYpmGLMm55jW5-gixg1Op2yqGXpbZG7sIVitukxtt8Er_ZUNPtuNyg3W7LMIncl9aBPj1pnqfbqP2lo5-wNt5pTzcQijHsYA8RKdGdVFuDq-c_Tx-PC-fM5Xr08vy8Uq14yTIQeDRYmFMYJqUplaU05JWdaKp7ptMBeCct1qwRkoUrNGE8Lgk5gamOC4ZHN0e-iblt6NEAfZ26ih65QDP0bJkqkUlCWQHkAdfIwBjNwG26uwlwTLKT65kVN8copv0lJ8yXRz7K5iysYE5bSNf86EJqriibs_cJC--m0hyKgtOA2tDaAH2Xr735hfKPOGfw</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Ratto, F.</creator><creator>Johnston, T.W.</creator><creator>Heun, S.</creator><creator>Rosei, F.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2008</creationdate><title>A numerical approach to quantify self-ordering among self-organized nanostructures</title><author>Ratto, F. ; Johnston, T.W. ; Heun, S. ; Rosei, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-ef07407ff72c15f8c2621448a62c1d9067726cdc763ea1839c113eb1f8e376043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Growth</topic><topic>In situ characterization</topic><topic>Low-energy electron microscopy (LEEM)</topic><topic>Monte Carlo simulations</topic><topic>Nanostructures</topic><topic>Nucleation</topic><topic>Physics</topic><topic>Semiconductor–semiconductor heterostructures</topic><topic>Silicon–germanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratto, F.</creatorcontrib><creatorcontrib>Johnston, T.W.</creatorcontrib><creatorcontrib>Heun, S.</creatorcontrib><creatorcontrib>Rosei, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratto, F.</au><au>Johnston, T.W.</au><au>Heun, S.</au><au>Rosei, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical approach to quantify self-ordering among self-organized nanostructures</atitle><jtitle>Surface science</jtitle><date>2008</date><risdate>2008</risdate><volume>602</volume><issue>1</issue><spage>249</spage><epage>258</epage><pages>249-258</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><coden>SUSCAS</coden><abstract>The geometrical layout in two-dimensional arrays of self-organized nanostructures is usually not completely ordered, nor completely disordered. The ability to quantify a degree of order gives significant insight in nanoscale self-organization processes. We address this issue analytically. We first simulate the arrangement of nuclei in two-dimensional lattices with mixed order/disorder, as defined by a suitable order parameter. We focus on statistical properties of the local environment of the simulated nuclei. Finally, we compare this statistical analysis with results from actual experimental images. Here we test our analysis with the Ge/Si(1
1
1) model system. Our approach reveals a significant tendency towards self-ordering in this system, which is primarily attributed to
Brownian nucleation and capture dynamics.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2007.10.025</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-6028 |
ispartof | Surface science, 2008, Vol.602 (1), p.249-258 |
issn | 0039-6028 1879-2758 |
language | eng |
recordid | cdi_proquest_miscellaneous_31834723 |
source | Elsevier ScienceDirect Journals |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Exact sciences and technology Growth In situ characterization Low-energy electron microscopy (LEEM) Monte Carlo simulations Nanostructures Nucleation Physics Semiconductor–semiconductor heterostructures Silicon–germanium |
title | A numerical approach to quantify self-ordering among self-organized nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20approach%20to%20quantify%20self-ordering%20among%20self-organized%20nanostructures&rft.jtitle=Surface%20science&rft.au=Ratto,%20F.&rft.date=2008&rft.volume=602&rft.issue=1&rft.spage=249&rft.epage=258&rft.pages=249-258&rft.issn=0039-6028&rft.eissn=1879-2758&rft.coden=SUSCAS&rft_id=info:doi/10.1016/j.susc.2007.10.025&rft_dat=%3Cproquest_cross%3E31834723%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31834723&rft_id=info:pmid/&rft_els_id=S0039602807010357&rfr_iscdi=true |