A numerical approach to quantify self-ordering among self-organized nanostructures

The geometrical layout in two-dimensional arrays of self-organized nanostructures is usually not completely ordered, nor completely disordered. The ability to quantify a degree of order gives significant insight in nanoscale self-organization processes. We address this issue analytically. We first s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface science 2008, Vol.602 (1), p.249-258
Hauptverfasser: Ratto, F., Johnston, T.W., Heun, S., Rosei, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue 1
container_start_page 249
container_title Surface science
container_volume 602
creator Ratto, F.
Johnston, T.W.
Heun, S.
Rosei, F.
description The geometrical layout in two-dimensional arrays of self-organized nanostructures is usually not completely ordered, nor completely disordered. The ability to quantify a degree of order gives significant insight in nanoscale self-organization processes. We address this issue analytically. We first simulate the arrangement of nuclei in two-dimensional lattices with mixed order/disorder, as defined by a suitable order parameter. We focus on statistical properties of the local environment of the simulated nuclei. Finally, we compare this statistical analysis with results from actual experimental images. Here we test our analysis with the Ge/Si(1 1 1) model system. Our approach reveals a significant tendency towards self-ordering in this system, which is primarily attributed to Brownian nucleation and capture dynamics.
doi_str_mv 10.1016/j.susc.2007.10.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31834723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039602807010357</els_id><sourcerecordid>31834723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-ef07407ff72c15f8c2621448a62c1d9067726cdc763ea1839c113eb1f8e376043</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVfd6K41jzZpwc0w-IIBQXQdYnozZmiTmaQVxl9vygwuzSLhHr5z781B6JrggmDC7zZFHKMuKMYiCQWm1QmakVo0ORVVfYpmGLMm55jW5-gixg1Op2yqGXpbZG7sIVitukxtt8Er_ZUNPtuNyg3W7LMIncl9aBPj1pnqfbqP2lo5-wNt5pTzcQijHsYA8RKdGdVFuDq-c_Tx-PC-fM5Xr08vy8Uq14yTIQeDRYmFMYJqUplaU05JWdaKp7ptMBeCct1qwRkoUrNGE8Lgk5gamOC4ZHN0e-iblt6NEAfZ26ih65QDP0bJkqkUlCWQHkAdfIwBjNwG26uwlwTLKT65kVN8copv0lJ8yXRz7K5iysYE5bSNf86EJqriibs_cJC--m0hyKgtOA2tDaAH2Xr735hfKPOGfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31834723</pqid></control><display><type>article</type><title>A numerical approach to quantify self-ordering among self-organized nanostructures</title><source>Elsevier ScienceDirect Journals</source><creator>Ratto, F. ; Johnston, T.W. ; Heun, S. ; Rosei, F.</creator><creatorcontrib>Ratto, F. ; Johnston, T.W. ; Heun, S. ; Rosei, F.</creatorcontrib><description>The geometrical layout in two-dimensional arrays of self-organized nanostructures is usually not completely ordered, nor completely disordered. The ability to quantify a degree of order gives significant insight in nanoscale self-organization processes. We address this issue analytically. We first simulate the arrangement of nuclei in two-dimensional lattices with mixed order/disorder, as defined by a suitable order parameter. We focus on statistical properties of the local environment of the simulated nuclei. Finally, we compare this statistical analysis with results from actual experimental images. Here we test our analysis with the Ge/Si(1 1 1) model system. Our approach reveals a significant tendency towards self-ordering in this system, which is primarily attributed to Brownian nucleation and capture dynamics.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/j.susc.2007.10.025</identifier><identifier>CODEN: SUSCAS</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Growth ; In situ characterization ; Low-energy electron microscopy (LEEM) ; Monte Carlo simulations ; Nanostructures ; Nucleation ; Physics ; Semiconductor–semiconductor heterostructures ; Silicon–germanium</subject><ispartof>Surface science, 2008, Vol.602 (1), p.249-258</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-ef07407ff72c15f8c2621448a62c1d9067726cdc763ea1839c113eb1f8e376043</citedby><cites>FETCH-LOGICAL-c361t-ef07407ff72c15f8c2621448a62c1d9067726cdc763ea1839c113eb1f8e376043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0039602807010357$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20002556$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ratto, F.</creatorcontrib><creatorcontrib>Johnston, T.W.</creatorcontrib><creatorcontrib>Heun, S.</creatorcontrib><creatorcontrib>Rosei, F.</creatorcontrib><title>A numerical approach to quantify self-ordering among self-organized nanostructures</title><title>Surface science</title><description>The geometrical layout in two-dimensional arrays of self-organized nanostructures is usually not completely ordered, nor completely disordered. The ability to quantify a degree of order gives significant insight in nanoscale self-organization processes. We address this issue analytically. We first simulate the arrangement of nuclei in two-dimensional lattices with mixed order/disorder, as defined by a suitable order parameter. We focus on statistical properties of the local environment of the simulated nuclei. Finally, we compare this statistical analysis with results from actual experimental images. Here we test our analysis with the Ge/Si(1 1 1) model system. Our approach reveals a significant tendency towards self-ordering in this system, which is primarily attributed to Brownian nucleation and capture dynamics.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Growth</subject><subject>In situ characterization</subject><subject>Low-energy electron microscopy (LEEM)</subject><subject>Monte Carlo simulations</subject><subject>Nanostructures</subject><subject>Nucleation</subject><subject>Physics</subject><subject>Semiconductor–semiconductor heterostructures</subject><subject>Silicon–germanium</subject><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVfd6K41jzZpwc0w-IIBQXQdYnozZmiTmaQVxl9vygwuzSLhHr5z781B6JrggmDC7zZFHKMuKMYiCQWm1QmakVo0ORVVfYpmGLMm55jW5-gixg1Op2yqGXpbZG7sIVitukxtt8Er_ZUNPtuNyg3W7LMIncl9aBPj1pnqfbqP2lo5-wNt5pTzcQijHsYA8RKdGdVFuDq-c_Tx-PC-fM5Xr08vy8Uq14yTIQeDRYmFMYJqUplaU05JWdaKp7ptMBeCct1qwRkoUrNGE8Lgk5gamOC4ZHN0e-iblt6NEAfZ26ih65QDP0bJkqkUlCWQHkAdfIwBjNwG26uwlwTLKT65kVN8copv0lJ8yXRz7K5iysYE5bSNf86EJqriibs_cJC--m0hyKgtOA2tDaAH2Xr735hfKPOGfw</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Ratto, F.</creator><creator>Johnston, T.W.</creator><creator>Heun, S.</creator><creator>Rosei, F.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2008</creationdate><title>A numerical approach to quantify self-ordering among self-organized nanostructures</title><author>Ratto, F. ; Johnston, T.W. ; Heun, S. ; Rosei, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-ef07407ff72c15f8c2621448a62c1d9067726cdc763ea1839c113eb1f8e376043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Growth</topic><topic>In situ characterization</topic><topic>Low-energy electron microscopy (LEEM)</topic><topic>Monte Carlo simulations</topic><topic>Nanostructures</topic><topic>Nucleation</topic><topic>Physics</topic><topic>Semiconductor–semiconductor heterostructures</topic><topic>Silicon–germanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratto, F.</creatorcontrib><creatorcontrib>Johnston, T.W.</creatorcontrib><creatorcontrib>Heun, S.</creatorcontrib><creatorcontrib>Rosei, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratto, F.</au><au>Johnston, T.W.</au><au>Heun, S.</au><au>Rosei, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical approach to quantify self-ordering among self-organized nanostructures</atitle><jtitle>Surface science</jtitle><date>2008</date><risdate>2008</risdate><volume>602</volume><issue>1</issue><spage>249</spage><epage>258</epage><pages>249-258</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><coden>SUSCAS</coden><abstract>The geometrical layout in two-dimensional arrays of self-organized nanostructures is usually not completely ordered, nor completely disordered. The ability to quantify a degree of order gives significant insight in nanoscale self-organization processes. We address this issue analytically. We first simulate the arrangement of nuclei in two-dimensional lattices with mixed order/disorder, as defined by a suitable order parameter. We focus on statistical properties of the local environment of the simulated nuclei. Finally, we compare this statistical analysis with results from actual experimental images. Here we test our analysis with the Ge/Si(1 1 1) model system. Our approach reveals a significant tendency towards self-ordering in this system, which is primarily attributed to Brownian nucleation and capture dynamics.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/j.susc.2007.10.025</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-6028
ispartof Surface science, 2008, Vol.602 (1), p.249-258
issn 0039-6028
1879-2758
language eng
recordid cdi_proquest_miscellaneous_31834723
source Elsevier ScienceDirect Journals
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Growth
In situ characterization
Low-energy electron microscopy (LEEM)
Monte Carlo simulations
Nanostructures
Nucleation
Physics
Semiconductor–semiconductor heterostructures
Silicon–germanium
title A numerical approach to quantify self-ordering among self-organized nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20approach%20to%20quantify%20self-ordering%20among%20self-organized%20nanostructures&rft.jtitle=Surface%20science&rft.au=Ratto,%20F.&rft.date=2008&rft.volume=602&rft.issue=1&rft.spage=249&rft.epage=258&rft.pages=249-258&rft.issn=0039-6028&rft.eissn=1879-2758&rft.coden=SUSCAS&rft_id=info:doi/10.1016/j.susc.2007.10.025&rft_dat=%3Cproquest_cross%3E31834723%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31834723&rft_id=info:pmid/&rft_els_id=S0039602807010357&rfr_iscdi=true