Non-isothermal moisture transport through insulation materials
An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10 K an...
Gespeichert in:
Veröffentlicht in: | Building and environment 2008-05, Vol.43 (5), p.811-822 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 822 |
---|---|
container_issue | 5 |
container_start_page | 811 |
container_title | Building and environment |
container_volume | 43 |
creator | Peuhkuri, Ruut Rode, Carsten Hansen, Kurt Kielsgaard |
description | An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10
K and given humidity gradient over the sample. The resulting moisture flux as well as the hygrothermal states around and within the material were monitored.
The hypothesis of relative humidity being a driving force for non-isothermal moisture transport already in the hygroscopic range could not be confirmed. On the contrary, indications exist that the temperature gradient itself is driving the moisture from the warm side towards the cold side. An attempt to identify and quantify the single contributions of the different transport forms involved is also presented. The different results gave, however, diverging conclusions and therefore the question about existence of the type of transport forms driven by the non-isothermal effects remains open. Rather surprisingly, all the materials, including the almost non-hygroscopic materials (e.g. rock wool) and very hygroscopic materials (e.g. cellulose insulation) showed the same characteristics. |
doi_str_mv | 10.1016/j.buildenv.2007.01.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31834623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360132307000200</els_id><sourcerecordid>31834623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-827458e50d036497d3dd071b075809ae04cc0982e74af6caf1816fdd9466b2323</originalsourceid><addsrcrecordid>eNqFkMFKJDEURcOgYOvML0htdFflSyWdpDaiiDMKjbNRmF1IJ6-m01RV2iQl-PdGWt26uptz330cQk4pNBSouNg269kPDqeXpgWQDdAGWvqDLKiSrBaK_zsgC2ACaspadkSOU9pCKXaML8jlQ5hqn0LeYBzNUI3BpzxHrHI0U9qFmKu8iWH-v6n8lObBZB-majQZozdD-kkO-xL46yNPyNPv28ebu3r198_9zfWqthx4rlUr-VLhElz5g3fSMedA0jXIpYLOIHBroVMtSm56YU1PFRW9cx0XYt2Wr0_I-f7uLobnGVPWo08Wh8FMGOakGVWMi5Z9C7agJHRUFlDsQRtDShF7vYt-NPFVU9DvXvVWf3rV7141UF28luLZx4JJ1gx98WR9-moXlELXLQt3teeweHnxGHWyHieLzke0Wbvgv5t6A00dkbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20870917</pqid></control><display><type>article</type><title>Non-isothermal moisture transport through insulation materials</title><source>Access via ScienceDirect (Elsevier)</source><creator>Peuhkuri, Ruut ; Rode, Carsten ; Hansen, Kurt Kielsgaard</creator><creatorcontrib>Peuhkuri, Ruut ; Rode, Carsten ; Hansen, Kurt Kielsgaard</creatorcontrib><description>An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10
K and given humidity gradient over the sample. The resulting moisture flux as well as the hygrothermal states around and within the material were monitored.
The hypothesis of relative humidity being a driving force for non-isothermal moisture transport already in the hygroscopic range could not be confirmed. On the contrary, indications exist that the temperature gradient itself is driving the moisture from the warm side towards the cold side. An attempt to identify and quantify the single contributions of the different transport forms involved is also presented. The different results gave, however, diverging conclusions and therefore the question about existence of the type of transport forms driven by the non-isothermal effects remains open. Rather surprisingly, all the materials, including the almost non-hygroscopic materials (e.g. rock wool) and very hygroscopic materials (e.g. cellulose insulation) showed the same characteristics.</description><identifier>ISSN: 0360-1323</identifier><identifier>EISSN: 1873-684X</identifier><identifier>DOI: 10.1016/j.buildenv.2007.01.021</identifier><identifier>CODEN: BUENDB</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Building insulation ; Buildings ; Buildings. Public works ; Cup test ; Exact sciences and technology ; Experimental ; External envelopes ; Hygroscopic ; Insulation materials ; Moisture transport ; Non-isothermal</subject><ispartof>Building and environment, 2008-05, Vol.43 (5), p.811-822</ispartof><rights>2007</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-827458e50d036497d3dd071b075809ae04cc0982e74af6caf1816fdd9466b2323</citedby><cites>FETCH-LOGICAL-c404t-827458e50d036497d3dd071b075809ae04cc0982e74af6caf1816fdd9466b2323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.buildenv.2007.01.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20010995$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peuhkuri, Ruut</creatorcontrib><creatorcontrib>Rode, Carsten</creatorcontrib><creatorcontrib>Hansen, Kurt Kielsgaard</creatorcontrib><title>Non-isothermal moisture transport through insulation materials</title><title>Building and environment</title><description>An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10
K and given humidity gradient over the sample. The resulting moisture flux as well as the hygrothermal states around and within the material were monitored.
The hypothesis of relative humidity being a driving force for non-isothermal moisture transport already in the hygroscopic range could not be confirmed. On the contrary, indications exist that the temperature gradient itself is driving the moisture from the warm side towards the cold side. An attempt to identify and quantify the single contributions of the different transport forms involved is also presented. The different results gave, however, diverging conclusions and therefore the question about existence of the type of transport forms driven by the non-isothermal effects remains open. Rather surprisingly, all the materials, including the almost non-hygroscopic materials (e.g. rock wool) and very hygroscopic materials (e.g. cellulose insulation) showed the same characteristics.</description><subject>Applied sciences</subject><subject>Building insulation</subject><subject>Buildings</subject><subject>Buildings. Public works</subject><subject>Cup test</subject><subject>Exact sciences and technology</subject><subject>Experimental</subject><subject>External envelopes</subject><subject>Hygroscopic</subject><subject>Insulation materials</subject><subject>Moisture transport</subject><subject>Non-isothermal</subject><issn>0360-1323</issn><issn>1873-684X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKJDEURcOgYOvML0htdFflSyWdpDaiiDMKjbNRmF1IJ6-m01RV2iQl-PdGWt26uptz330cQk4pNBSouNg269kPDqeXpgWQDdAGWvqDLKiSrBaK_zsgC2ACaspadkSOU9pCKXaML8jlQ5hqn0LeYBzNUI3BpzxHrHI0U9qFmKu8iWH-v6n8lObBZB-majQZozdD-kkO-xL46yNPyNPv28ebu3r198_9zfWqthx4rlUr-VLhElz5g3fSMedA0jXIpYLOIHBroVMtSm56YU1PFRW9cx0XYt2Wr0_I-f7uLobnGVPWo08Wh8FMGOakGVWMi5Z9C7agJHRUFlDsQRtDShF7vYt-NPFVU9DvXvVWf3rV7141UF28luLZx4JJ1gx98WR9-moXlELXLQt3teeweHnxGHWyHieLzke0Wbvgv5t6A00dkbw</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Peuhkuri, Ruut</creator><creator>Rode, Carsten</creator><creator>Hansen, Kurt Kielsgaard</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20080501</creationdate><title>Non-isothermal moisture transport through insulation materials</title><author>Peuhkuri, Ruut ; Rode, Carsten ; Hansen, Kurt Kielsgaard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-827458e50d036497d3dd071b075809ae04cc0982e74af6caf1816fdd9466b2323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Building insulation</topic><topic>Buildings</topic><topic>Buildings. Public works</topic><topic>Cup test</topic><topic>Exact sciences and technology</topic><topic>Experimental</topic><topic>External envelopes</topic><topic>Hygroscopic</topic><topic>Insulation materials</topic><topic>Moisture transport</topic><topic>Non-isothermal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peuhkuri, Ruut</creatorcontrib><creatorcontrib>Rode, Carsten</creatorcontrib><creatorcontrib>Hansen, Kurt Kielsgaard</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Building and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peuhkuri, Ruut</au><au>Rode, Carsten</au><au>Hansen, Kurt Kielsgaard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-isothermal moisture transport through insulation materials</atitle><jtitle>Building and environment</jtitle><date>2008-05-01</date><risdate>2008</risdate><volume>43</volume><issue>5</issue><spage>811</spage><epage>822</epage><pages>811-822</pages><issn>0360-1323</issn><eissn>1873-684X</eissn><coden>BUENDB</coden><abstract>An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10
K and given humidity gradient over the sample. The resulting moisture flux as well as the hygrothermal states around and within the material were monitored.
The hypothesis of relative humidity being a driving force for non-isothermal moisture transport already in the hygroscopic range could not be confirmed. On the contrary, indications exist that the temperature gradient itself is driving the moisture from the warm side towards the cold side. An attempt to identify and quantify the single contributions of the different transport forms involved is also presented. The different results gave, however, diverging conclusions and therefore the question about existence of the type of transport forms driven by the non-isothermal effects remains open. Rather surprisingly, all the materials, including the almost non-hygroscopic materials (e.g. rock wool) and very hygroscopic materials (e.g. cellulose insulation) showed the same characteristics.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.buildenv.2007.01.021</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-1323 |
ispartof | Building and environment, 2008-05, Vol.43 (5), p.811-822 |
issn | 0360-1323 1873-684X |
language | eng |
recordid | cdi_proquest_miscellaneous_31834623 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Building insulation Buildings Buildings. Public works Cup test Exact sciences and technology Experimental External envelopes Hygroscopic Insulation materials Moisture transport Non-isothermal |
title | Non-isothermal moisture transport through insulation materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T02%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-isothermal%20moisture%20transport%20through%20insulation%20materials&rft.jtitle=Building%20and%20environment&rft.au=Peuhkuri,%20Ruut&rft.date=2008-05-01&rft.volume=43&rft.issue=5&rft.spage=811&rft.epage=822&rft.pages=811-822&rft.issn=0360-1323&rft.eissn=1873-684X&rft.coden=BUENDB&rft_id=info:doi/10.1016/j.buildenv.2007.01.021&rft_dat=%3Cproquest_cross%3E31834623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20870917&rft_id=info:pmid/&rft_els_id=S0360132307000200&rfr_iscdi=true |