Non-isothermal moisture transport through insulation materials

An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10 K an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Building and environment 2008-05, Vol.43 (5), p.811-822
Hauptverfasser: Peuhkuri, Ruut, Rode, Carsten, Hansen, Kurt Kielsgaard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 822
container_issue 5
container_start_page 811
container_title Building and environment
container_volume 43
creator Peuhkuri, Ruut
Rode, Carsten
Hansen, Kurt Kielsgaard
description An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10 K and given humidity gradient over the sample. The resulting moisture flux as well as the hygrothermal states around and within the material were monitored. The hypothesis of relative humidity being a driving force for non-isothermal moisture transport already in the hygroscopic range could not be confirmed. On the contrary, indications exist that the temperature gradient itself is driving the moisture from the warm side towards the cold side. An attempt to identify and quantify the single contributions of the different transport forms involved is also presented. The different results gave, however, diverging conclusions and therefore the question about existence of the type of transport forms driven by the non-isothermal effects remains open. Rather surprisingly, all the materials, including the almost non-hygroscopic materials (e.g. rock wool) and very hygroscopic materials (e.g. cellulose insulation) showed the same characteristics.
doi_str_mv 10.1016/j.buildenv.2007.01.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31834623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360132307000200</els_id><sourcerecordid>31834623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-827458e50d036497d3dd071b075809ae04cc0982e74af6caf1816fdd9466b2323</originalsourceid><addsrcrecordid>eNqFkMFKJDEURcOgYOvML0htdFflSyWdpDaiiDMKjbNRmF1IJ6-m01RV2iQl-PdGWt26uptz330cQk4pNBSouNg269kPDqeXpgWQDdAGWvqDLKiSrBaK_zsgC2ACaspadkSOU9pCKXaML8jlQ5hqn0LeYBzNUI3BpzxHrHI0U9qFmKu8iWH-v6n8lObBZB-majQZozdD-kkO-xL46yNPyNPv28ebu3r198_9zfWqthx4rlUr-VLhElz5g3fSMedA0jXIpYLOIHBroVMtSm56YU1PFRW9cx0XYt2Wr0_I-f7uLobnGVPWo08Wh8FMGOakGVWMi5Z9C7agJHRUFlDsQRtDShF7vYt-NPFVU9DvXvVWf3rV7141UF28luLZx4JJ1gx98WR9-moXlELXLQt3teeweHnxGHWyHieLzke0Wbvgv5t6A00dkbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20870917</pqid></control><display><type>article</type><title>Non-isothermal moisture transport through insulation materials</title><source>Access via ScienceDirect (Elsevier)</source><creator>Peuhkuri, Ruut ; Rode, Carsten ; Hansen, Kurt Kielsgaard</creator><creatorcontrib>Peuhkuri, Ruut ; Rode, Carsten ; Hansen, Kurt Kielsgaard</creatorcontrib><description>An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10 K and given humidity gradient over the sample. The resulting moisture flux as well as the hygrothermal states around and within the material were monitored. The hypothesis of relative humidity being a driving force for non-isothermal moisture transport already in the hygroscopic range could not be confirmed. On the contrary, indications exist that the temperature gradient itself is driving the moisture from the warm side towards the cold side. An attempt to identify and quantify the single contributions of the different transport forms involved is also presented. The different results gave, however, diverging conclusions and therefore the question about existence of the type of transport forms driven by the non-isothermal effects remains open. Rather surprisingly, all the materials, including the almost non-hygroscopic materials (e.g. rock wool) and very hygroscopic materials (e.g. cellulose insulation) showed the same characteristics.</description><identifier>ISSN: 0360-1323</identifier><identifier>EISSN: 1873-684X</identifier><identifier>DOI: 10.1016/j.buildenv.2007.01.021</identifier><identifier>CODEN: BUENDB</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Building insulation ; Buildings ; Buildings. Public works ; Cup test ; Exact sciences and technology ; Experimental ; External envelopes ; Hygroscopic ; Insulation materials ; Moisture transport ; Non-isothermal</subject><ispartof>Building and environment, 2008-05, Vol.43 (5), p.811-822</ispartof><rights>2007</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-827458e50d036497d3dd071b075809ae04cc0982e74af6caf1816fdd9466b2323</citedby><cites>FETCH-LOGICAL-c404t-827458e50d036497d3dd071b075809ae04cc0982e74af6caf1816fdd9466b2323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.buildenv.2007.01.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20010995$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peuhkuri, Ruut</creatorcontrib><creatorcontrib>Rode, Carsten</creatorcontrib><creatorcontrib>Hansen, Kurt Kielsgaard</creatorcontrib><title>Non-isothermal moisture transport through insulation materials</title><title>Building and environment</title><description>An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10 K and given humidity gradient over the sample. The resulting moisture flux as well as the hygrothermal states around and within the material were monitored. The hypothesis of relative humidity being a driving force for non-isothermal moisture transport already in the hygroscopic range could not be confirmed. On the contrary, indications exist that the temperature gradient itself is driving the moisture from the warm side towards the cold side. An attempt to identify and quantify the single contributions of the different transport forms involved is also presented. The different results gave, however, diverging conclusions and therefore the question about existence of the type of transport forms driven by the non-isothermal effects remains open. Rather surprisingly, all the materials, including the almost non-hygroscopic materials (e.g. rock wool) and very hygroscopic materials (e.g. cellulose insulation) showed the same characteristics.</description><subject>Applied sciences</subject><subject>Building insulation</subject><subject>Buildings</subject><subject>Buildings. Public works</subject><subject>Cup test</subject><subject>Exact sciences and technology</subject><subject>Experimental</subject><subject>External envelopes</subject><subject>Hygroscopic</subject><subject>Insulation materials</subject><subject>Moisture transport</subject><subject>Non-isothermal</subject><issn>0360-1323</issn><issn>1873-684X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKJDEURcOgYOvML0htdFflSyWdpDaiiDMKjbNRmF1IJ6-m01RV2iQl-PdGWt26uptz330cQk4pNBSouNg269kPDqeXpgWQDdAGWvqDLKiSrBaK_zsgC2ACaspadkSOU9pCKXaML8jlQ5hqn0LeYBzNUI3BpzxHrHI0U9qFmKu8iWH-v6n8lObBZB-majQZozdD-kkO-xL46yNPyNPv28ebu3r198_9zfWqthx4rlUr-VLhElz5g3fSMedA0jXIpYLOIHBroVMtSm56YU1PFRW9cx0XYt2Wr0_I-f7uLobnGVPWo08Wh8FMGOakGVWMi5Z9C7agJHRUFlDsQRtDShF7vYt-NPFVU9DvXvVWf3rV7141UF28luLZx4JJ1gx98WR9-moXlELXLQt3teeweHnxGHWyHieLzke0Wbvgv5t6A00dkbw</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Peuhkuri, Ruut</creator><creator>Rode, Carsten</creator><creator>Hansen, Kurt Kielsgaard</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20080501</creationdate><title>Non-isothermal moisture transport through insulation materials</title><author>Peuhkuri, Ruut ; Rode, Carsten ; Hansen, Kurt Kielsgaard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-827458e50d036497d3dd071b075809ae04cc0982e74af6caf1816fdd9466b2323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Building insulation</topic><topic>Buildings</topic><topic>Buildings. Public works</topic><topic>Cup test</topic><topic>Exact sciences and technology</topic><topic>Experimental</topic><topic>External envelopes</topic><topic>Hygroscopic</topic><topic>Insulation materials</topic><topic>Moisture transport</topic><topic>Non-isothermal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peuhkuri, Ruut</creatorcontrib><creatorcontrib>Rode, Carsten</creatorcontrib><creatorcontrib>Hansen, Kurt Kielsgaard</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Building and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peuhkuri, Ruut</au><au>Rode, Carsten</au><au>Hansen, Kurt Kielsgaard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-isothermal moisture transport through insulation materials</atitle><jtitle>Building and environment</jtitle><date>2008-05-01</date><risdate>2008</risdate><volume>43</volume><issue>5</issue><spage>811</spage><epage>822</epage><pages>811-822</pages><issn>0360-1323</issn><eissn>1873-684X</eissn><coden>BUENDB</coden><abstract>An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10 K and given humidity gradient over the sample. The resulting moisture flux as well as the hygrothermal states around and within the material were monitored. The hypothesis of relative humidity being a driving force for non-isothermal moisture transport already in the hygroscopic range could not be confirmed. On the contrary, indications exist that the temperature gradient itself is driving the moisture from the warm side towards the cold side. An attempt to identify and quantify the single contributions of the different transport forms involved is also presented. The different results gave, however, diverging conclusions and therefore the question about existence of the type of transport forms driven by the non-isothermal effects remains open. Rather surprisingly, all the materials, including the almost non-hygroscopic materials (e.g. rock wool) and very hygroscopic materials (e.g. cellulose insulation) showed the same characteristics.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.buildenv.2007.01.021</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-1323
ispartof Building and environment, 2008-05, Vol.43 (5), p.811-822
issn 0360-1323
1873-684X
language eng
recordid cdi_proquest_miscellaneous_31834623
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Building insulation
Buildings
Buildings. Public works
Cup test
Exact sciences and technology
Experimental
External envelopes
Hygroscopic
Insulation materials
Moisture transport
Non-isothermal
title Non-isothermal moisture transport through insulation materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T02%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-isothermal%20moisture%20transport%20through%20insulation%20materials&rft.jtitle=Building%20and%20environment&rft.au=Peuhkuri,%20Ruut&rft.date=2008-05-01&rft.volume=43&rft.issue=5&rft.spage=811&rft.epage=822&rft.pages=811-822&rft.issn=0360-1323&rft.eissn=1873-684X&rft.coden=BUENDB&rft_id=info:doi/10.1016/j.buildenv.2007.01.021&rft_dat=%3Cproquest_cross%3E31834623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20870917&rft_id=info:pmid/&rft_els_id=S0360132307000200&rfr_iscdi=true