Investigation of heat transfer coefficient in two-dimensional transient inverse heat conduction problems using the hybrid inverse scheme
A hybrid scheme of the Laplace transform, finite difference and least‐squares methods in conjunction with a sequential‐in‐time concept, cubic spline and temperature measurements is applied to predict the heat transfer coefficient distribution on a boundary surface in two‐dimensional transient invers...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2008-01, Vol.73 (1), p.107-122 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 122 |
---|---|
container_issue | 1 |
container_start_page | 107 |
container_title | International journal for numerical methods in engineering |
container_volume | 73 |
creator | Chen, Han-Taw Wu, Xin-Yi |
description | A hybrid scheme of the Laplace transform, finite difference and least‐squares methods in conjunction with a sequential‐in‐time concept, cubic spline and temperature measurements is applied to predict the heat transfer coefficient distribution on a boundary surface in two‐dimensional transient inverse heat conduction problems. In this study, the functional form of the heat transfer coefficient is unknown a priori. The whole spatial domain of the unknown heat transfer coefficient is divided into several analysis sub‐intervals. Later, a series of connected cubic polynomial function in space and a linear function in time can be applied to estimate the unknown surface conditions. Due to the application of the Laplace transform, the unknown heat transfer coefficient can be estimated from a specific time. In order to evidence the accuracy of the present inverse scheme, comparisons among the present estimates, previous results and exact solution are made. The results show that the present inverse scheme not only can reduce the number of the measurement locations but also can increase the accuracy of the estimated results. Good estimation on the heat transfer coefficient can be obtained from the knowledge of the transient temperature recordings even in the case with measurement errors. Copyright © 2007 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.2059 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31832077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31832077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3649-40d465eb9813609356ff316bde31f0d6d4971e5b0f88fc36cb123efbcb54893c3</originalsourceid><addsrcrecordid>eNp10MtO3DAUBmALtRJTWolHyIaqm1A7zs3LCnHVdIARqBUby3GOZ0wTZ_DJMJ034LHraSJYsfLifOeXz0_IIaPHjNLku2vhOKGZ2CMTRkUR04QWH8gkjESciZLtk0-Ij5QyllE-IS-X7hmwtwvV285FnYmWoPqo98qhAR_pDoyx2oLrI-uiftPFtW3BYdCqGdw4fAaPMKzrztVr_T9x5buqgRajNVq3iPplINvK2_p1A_USWvhMPhrVIHwZ3wNyf3Z6d3IRT6_PL09-TGPN81TEKa3TPIMqXMJzKniWG8NZXtXAmaF1XqeiYJBV1JSlCSu6YgkHU-kqS0vBNT8gX4fc8LGndThdthY1NI1y0K1RclbyUFkR4LcBat8hejBy5W2r_FYyKndVy1C13FUd6NGYqVCrxoRStMU3L0QqyiQPLh7cxjawfTdPzn6ejrmjt9jD31ev_B-ZF7zI5K_ZuXwQN7_nV7c3cs7_AaXVn6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31832077</pqid></control><display><type>article</type><title>Investigation of heat transfer coefficient in two-dimensional transient inverse heat conduction problems using the hybrid inverse scheme</title><source>Wiley-Blackwell Journals</source><creator>Chen, Han-Taw ; Wu, Xin-Yi</creator><creatorcontrib>Chen, Han-Taw ; Wu, Xin-Yi</creatorcontrib><description>A hybrid scheme of the Laplace transform, finite difference and least‐squares methods in conjunction with a sequential‐in‐time concept, cubic spline and temperature measurements is applied to predict the heat transfer coefficient distribution on a boundary surface in two‐dimensional transient inverse heat conduction problems. In this study, the functional form of the heat transfer coefficient is unknown a priori. The whole spatial domain of the unknown heat transfer coefficient is divided into several analysis sub‐intervals. Later, a series of connected cubic polynomial function in space and a linear function in time can be applied to estimate the unknown surface conditions. Due to the application of the Laplace transform, the unknown heat transfer coefficient can be estimated from a specific time. In order to evidence the accuracy of the present inverse scheme, comparisons among the present estimates, previous results and exact solution are made. The results show that the present inverse scheme not only can reduce the number of the measurement locations but also can increase the accuracy of the estimated results. Good estimation on the heat transfer coefficient can be obtained from the knowledge of the transient temperature recordings even in the case with measurement errors. Copyright © 2007 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.2059</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>2-D IHCP ; Analytical and numerical techniques ; Computational techniques ; cubic spline ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Heat conduction ; Heat transfer ; heat transfer coefficient ; hybrid inverse scheme ; Mathematical methods in physics ; Physics</subject><ispartof>International journal for numerical methods in engineering, 2008-01, Vol.73 (1), p.107-122</ispartof><rights>Copyright © 2007 John Wiley & Sons, Ltd.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3649-40d465eb9813609356ff316bde31f0d6d4971e5b0f88fc36cb123efbcb54893c3</citedby><cites>FETCH-LOGICAL-c3649-40d465eb9813609356ff316bde31f0d6d4971e5b0f88fc36cb123efbcb54893c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.2059$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.2059$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,4024,27923,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19949826$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Han-Taw</creatorcontrib><creatorcontrib>Wu, Xin-Yi</creatorcontrib><title>Investigation of heat transfer coefficient in two-dimensional transient inverse heat conduction problems using the hybrid inverse scheme</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>A hybrid scheme of the Laplace transform, finite difference and least‐squares methods in conjunction with a sequential‐in‐time concept, cubic spline and temperature measurements is applied to predict the heat transfer coefficient distribution on a boundary surface in two‐dimensional transient inverse heat conduction problems. In this study, the functional form of the heat transfer coefficient is unknown a priori. The whole spatial domain of the unknown heat transfer coefficient is divided into several analysis sub‐intervals. Later, a series of connected cubic polynomial function in space and a linear function in time can be applied to estimate the unknown surface conditions. Due to the application of the Laplace transform, the unknown heat transfer coefficient can be estimated from a specific time. In order to evidence the accuracy of the present inverse scheme, comparisons among the present estimates, previous results and exact solution are made. The results show that the present inverse scheme not only can reduce the number of the measurement locations but also can increase the accuracy of the estimated results. Good estimation on the heat transfer coefficient can be obtained from the knowledge of the transient temperature recordings even in the case with measurement errors. Copyright © 2007 John Wiley & Sons, Ltd.</description><subject>2-D IHCP</subject><subject>Analytical and numerical techniques</subject><subject>Computational techniques</subject><subject>cubic spline</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat conduction</subject><subject>Heat transfer</subject><subject>heat transfer coefficient</subject><subject>hybrid inverse scheme</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp10MtO3DAUBmALtRJTWolHyIaqm1A7zs3LCnHVdIARqBUby3GOZ0wTZ_DJMJ034LHraSJYsfLifOeXz0_IIaPHjNLku2vhOKGZ2CMTRkUR04QWH8gkjESciZLtk0-Ij5QyllE-IS-X7hmwtwvV285FnYmWoPqo98qhAR_pDoyx2oLrI-uiftPFtW3BYdCqGdw4fAaPMKzrztVr_T9x5buqgRajNVq3iPplINvK2_p1A_USWvhMPhrVIHwZ3wNyf3Z6d3IRT6_PL09-TGPN81TEKa3TPIMqXMJzKniWG8NZXtXAmaF1XqeiYJBV1JSlCSu6YgkHU-kqS0vBNT8gX4fc8LGndThdthY1NI1y0K1RclbyUFkR4LcBat8hejBy5W2r_FYyKndVy1C13FUd6NGYqVCrxoRStMU3L0QqyiQPLh7cxjawfTdPzn6ejrmjt9jD31ev_B-ZF7zI5K_ZuXwQN7_nV7c3cs7_AaXVn6w</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Chen, Han-Taw</creator><creator>Wu, Xin-Yi</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080101</creationdate><title>Investigation of heat transfer coefficient in two-dimensional transient inverse heat conduction problems using the hybrid inverse scheme</title><author>Chen, Han-Taw ; Wu, Xin-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3649-40d465eb9813609356ff316bde31f0d6d4971e5b0f88fc36cb123efbcb54893c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>2-D IHCP</topic><topic>Analytical and numerical techniques</topic><topic>Computational techniques</topic><topic>cubic spline</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat conduction</topic><topic>Heat transfer</topic><topic>heat transfer coefficient</topic><topic>hybrid inverse scheme</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Han-Taw</creatorcontrib><creatorcontrib>Wu, Xin-Yi</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Han-Taw</au><au>Wu, Xin-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of heat transfer coefficient in two-dimensional transient inverse heat conduction problems using the hybrid inverse scheme</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>73</volume><issue>1</issue><spage>107</spage><epage>122</epage><pages>107-122</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>A hybrid scheme of the Laplace transform, finite difference and least‐squares methods in conjunction with a sequential‐in‐time concept, cubic spline and temperature measurements is applied to predict the heat transfer coefficient distribution on a boundary surface in two‐dimensional transient inverse heat conduction problems. In this study, the functional form of the heat transfer coefficient is unknown a priori. The whole spatial domain of the unknown heat transfer coefficient is divided into several analysis sub‐intervals. Later, a series of connected cubic polynomial function in space and a linear function in time can be applied to estimate the unknown surface conditions. Due to the application of the Laplace transform, the unknown heat transfer coefficient can be estimated from a specific time. In order to evidence the accuracy of the present inverse scheme, comparisons among the present estimates, previous results and exact solution are made. The results show that the present inverse scheme not only can reduce the number of the measurement locations but also can increase the accuracy of the estimated results. Good estimation on the heat transfer coefficient can be obtained from the knowledge of the transient temperature recordings even in the case with measurement errors. Copyright © 2007 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.2059</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2008-01, Vol.73 (1), p.107-122 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_31832077 |
source | Wiley-Blackwell Journals |
subjects | 2-D IHCP Analytical and numerical techniques Computational techniques cubic spline Exact sciences and technology Fundamental areas of phenomenology (including applications) Heat conduction Heat transfer heat transfer coefficient hybrid inverse scheme Mathematical methods in physics Physics |
title | Investigation of heat transfer coefficient in two-dimensional transient inverse heat conduction problems using the hybrid inverse scheme |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20heat%20transfer%20coefficient%20in%20two-dimensional%20transient%20inverse%20heat%20conduction%20problems%20using%20the%20hybrid%20inverse%20scheme&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Chen,%20Han-Taw&rft.date=2008-01-01&rft.volume=73&rft.issue=1&rft.spage=107&rft.epage=122&rft.pages=107-122&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.2059&rft_dat=%3Cproquest_cross%3E31832077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31832077&rft_id=info:pmid/&rfr_iscdi=true |