Effect of microstructure on ultra-high cycle fatigue behavior of Ti–6Al–4V

The fatigue behavior of Ti–6Al–4V alloy with the bimodal and basketweave microstructures has been investigated. The results show that the S– N curves of Ti–6Al–4V with both microstructures continuously decrease with increasing the number of cycles to failure and have no horizontal asymptote in the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2008-01, Vol.473 (1), p.147-152
Hauptverfasser: Zuo, J.H., Wang, Z.G., Han, E.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue 1
container_start_page 147
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 473
creator Zuo, J.H.
Wang, Z.G.
Han, E.H.
description The fatigue behavior of Ti–6Al–4V alloy with the bimodal and basketweave microstructures has been investigated. The results show that the S– N curves of Ti–6Al–4V with both microstructures continuously decrease with increasing the number of cycles to failure and have no horizontal asymptote in the regime of 10 5 to 10 9 cycles. SEM observation of fracture surface indicates that the crack initiation sites abruptly shift from surface to interior of the specimen with decreasing the stress amplitude. It is found that the surface crack initiation mainly results from the machining traces. Nevertheless, most of the internal fatigue cracks initiate in the border region of primary α-grains in bimodal microstructure or at α–β interfaces in basketweave microstructure, which induced by inhomogeneity of microstructures and incompatibility of deformation between two phases. The size of the internal crack initiation site was evaluated and the dependence of the fatigue life on the location and size of the initiation sites is discussed.
doi_str_mv 10.1016/j.msea.2007.04.062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31764225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509307007204</els_id><sourcerecordid>31764225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-e3599601eb0fbc844c4fcee603353b5432d92aace2235e2ab4a438b6a7eddaec3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6yygV3C-JGkkdhUVXlIFWwKW8txxq2rpCl2Uqk7_oE_5EtwVMSSzczm3DuaQ8g1hYQCze42SeNRJQwgT0AkkLETMqKTnMei4NkpGUHBaJxCwc_JhfcbAKAC0hF5mRuDuotaEzVWu9Z3rtdd7zBqt1Ffd07Fa7taR_qga4yM6uyqx6jEtdrb1g2xpf3-_MqmdZji_ZKcGVV7vPrdY_L2MF_OnuLF6-PzbLqItWB5FyNPiyIDiiWYUk-E0MJoxAw4T3mZCs6qgimlkTGeIlOlUIJPykzlWFUKNR-T22PvzrUfPfpONtZrrGu1xbb3ktM8E4ylAWRHcPjNOzRy52yj3EFSkIM6uZGDOjmokyBkUBdCN7_tymtVG6e22vq_ZEAZTWkRuPsjh-HVvUUnvba41VhZF6TKqrX_nfkBGB-Ghw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31764225</pqid></control><display><type>article</type><title>Effect of microstructure on ultra-high cycle fatigue behavior of Ti–6Al–4V</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zuo, J.H. ; Wang, Z.G. ; Han, E.H.</creator><creatorcontrib>Zuo, J.H. ; Wang, Z.G. ; Han, E.H.</creatorcontrib><description>The fatigue behavior of Ti–6Al–4V alloy with the bimodal and basketweave microstructures has been investigated. The results show that the S– N curves of Ti–6Al–4V with both microstructures continuously decrease with increasing the number of cycles to failure and have no horizontal asymptote in the regime of 10 5 to 10 9 cycles. SEM observation of fracture surface indicates that the crack initiation sites abruptly shift from surface to interior of the specimen with decreasing the stress amplitude. It is found that the surface crack initiation mainly results from the machining traces. Nevertheless, most of the internal fatigue cracks initiate in the border region of primary α-grains in bimodal microstructure or at α–β interfaces in basketweave microstructure, which induced by inhomogeneity of microstructures and incompatibility of deformation between two phases. The size of the internal crack initiation site was evaluated and the dependence of the fatigue life on the location and size of the initiation sites is discussed.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2007.04.062</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Crack initiation ; Exact sciences and technology ; Fatigue ; Fractures ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Microstructure ; Ti–6Al–4V alloy ; Ultra-high cycle fatigue</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2008-01, Vol.473 (1), p.147-152</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-e3599601eb0fbc844c4fcee603353b5432d92aace2235e2ab4a438b6a7eddaec3</citedby><cites>FETCH-LOGICAL-c427t-e3599601eb0fbc844c4fcee603353b5432d92aace2235e2ab4a438b6a7eddaec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2007.04.062$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20021519$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zuo, J.H.</creatorcontrib><creatorcontrib>Wang, Z.G.</creatorcontrib><creatorcontrib>Han, E.H.</creatorcontrib><title>Effect of microstructure on ultra-high cycle fatigue behavior of Ti–6Al–4V</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The fatigue behavior of Ti–6Al–4V alloy with the bimodal and basketweave microstructures has been investigated. The results show that the S– N curves of Ti–6Al–4V with both microstructures continuously decrease with increasing the number of cycles to failure and have no horizontal asymptote in the regime of 10 5 to 10 9 cycles. SEM observation of fracture surface indicates that the crack initiation sites abruptly shift from surface to interior of the specimen with decreasing the stress amplitude. It is found that the surface crack initiation mainly results from the machining traces. Nevertheless, most of the internal fatigue cracks initiate in the border region of primary α-grains in bimodal microstructure or at α–β interfaces in basketweave microstructure, which induced by inhomogeneity of microstructures and incompatibility of deformation between two phases. The size of the internal crack initiation site was evaluated and the dependence of the fatigue life on the location and size of the initiation sites is discussed.</description><subject>Applied sciences</subject><subject>Crack initiation</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Fractures</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Ti–6Al–4V alloy</subject><subject>Ultra-high cycle fatigue</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6yygV3C-JGkkdhUVXlIFWwKW8txxq2rpCl2Uqk7_oE_5EtwVMSSzczm3DuaQ8g1hYQCze42SeNRJQwgT0AkkLETMqKTnMei4NkpGUHBaJxCwc_JhfcbAKAC0hF5mRuDuotaEzVWu9Z3rtdd7zBqt1Ffd07Fa7taR_qga4yM6uyqx6jEtdrb1g2xpf3-_MqmdZji_ZKcGVV7vPrdY_L2MF_OnuLF6-PzbLqItWB5FyNPiyIDiiWYUk-E0MJoxAw4T3mZCs6qgimlkTGeIlOlUIJPykzlWFUKNR-T22PvzrUfPfpONtZrrGu1xbb3ktM8E4ylAWRHcPjNOzRy52yj3EFSkIM6uZGDOjmokyBkUBdCN7_tymtVG6e22vq_ZEAZTWkRuPsjh-HVvUUnvba41VhZF6TKqrX_nfkBGB-Ghw</recordid><startdate>20080125</startdate><enddate>20080125</enddate><creator>Zuo, J.H.</creator><creator>Wang, Z.G.</creator><creator>Han, E.H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080125</creationdate><title>Effect of microstructure on ultra-high cycle fatigue behavior of Ti–6Al–4V</title><author>Zuo, J.H. ; Wang, Z.G. ; Han, E.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-e3599601eb0fbc844c4fcee603353b5432d92aace2235e2ab4a438b6a7eddaec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Crack initiation</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Fractures</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Ti–6Al–4V alloy</topic><topic>Ultra-high cycle fatigue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, J.H.</creatorcontrib><creatorcontrib>Wang, Z.G.</creatorcontrib><creatorcontrib>Han, E.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, J.H.</au><au>Wang, Z.G.</au><au>Han, E.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of microstructure on ultra-high cycle fatigue behavior of Ti–6Al–4V</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2008-01-25</date><risdate>2008</risdate><volume>473</volume><issue>1</issue><spage>147</spage><epage>152</epage><pages>147-152</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The fatigue behavior of Ti–6Al–4V alloy with the bimodal and basketweave microstructures has been investigated. The results show that the S– N curves of Ti–6Al–4V with both microstructures continuously decrease with increasing the number of cycles to failure and have no horizontal asymptote in the regime of 10 5 to 10 9 cycles. SEM observation of fracture surface indicates that the crack initiation sites abruptly shift from surface to interior of the specimen with decreasing the stress amplitude. It is found that the surface crack initiation mainly results from the machining traces. Nevertheless, most of the internal fatigue cracks initiate in the border region of primary α-grains in bimodal microstructure or at α–β interfaces in basketweave microstructure, which induced by inhomogeneity of microstructures and incompatibility of deformation between two phases. The size of the internal crack initiation site was evaluated and the dependence of the fatigue life on the location and size of the initiation sites is discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2007.04.062</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2008-01, Vol.473 (1), p.147-152
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_31764225
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Crack initiation
Exact sciences and technology
Fatigue
Fractures
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Microstructure
Ti–6Al–4V alloy
Ultra-high cycle fatigue
title Effect of microstructure on ultra-high cycle fatigue behavior of Ti–6Al–4V
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T19%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20microstructure%20on%20ultra-high%20cycle%20fatigue%20behavior%20of%20Ti%E2%80%936Al%E2%80%934V&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Zuo,%20J.H.&rft.date=2008-01-25&rft.volume=473&rft.issue=1&rft.spage=147&rft.epage=152&rft.pages=147-152&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2007.04.062&rft_dat=%3Cproquest_cross%3E31764225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31764225&rft_id=info:pmid/&rft_els_id=S0921509307007204&rfr_iscdi=true