Data mining technique for fast retrieval of similar waveforms in Fusion massive databases

Fusion measurement systems generate similar waveforms for reproducible behavior. A major difficulty related to data analysis is the identification, in a rapid and automated way, of a set of discharges with comparable behaviour, i.e. discharges with “similar” waveforms. Here we introduce a new techni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2008, Vol.83 (1), p.132-139
Hauptverfasser: Vega, J., Pereira, A., Portas, A., Dormido-Canto, S., Farias, G., Dormido, R., Sánchez, J., Duro, N., Santos, M., Sánchez, E., Pajares, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue 1
container_start_page 132
container_title Fusion engineering and design
container_volume 83
creator Vega, J.
Pereira, A.
Portas, A.
Dormido-Canto, S.
Farias, G.
Dormido, R.
Sánchez, J.
Duro, N.
Santos, M.
Sánchez, E.
Pajares, G.
description Fusion measurement systems generate similar waveforms for reproducible behavior. A major difficulty related to data analysis is the identification, in a rapid and automated way, of a set of discharges with comparable behaviour, i.e. discharges with “similar” waveforms. Here we introduce a new technique for rapid searching and retrieval of “similar” signals. The approach consists of building a classification system that avoids traversing the whole database looking for similarities. The classification system diminishes the problem dimensionality (by means of waveform feature extraction) and reduces the searching space to just the most probable “similar” waveforms (clustering techniques). In the searching procedure, the input waveform is classified in any of the existing clusters. Then, a similarity measure is computed between the input signal and all cluster elements in order to identify the most similar waveforms. The inner product of normalized vectors is used as the similarity measure as it allows the searching process to be independent of signal gain and polarity. This development has been applied recently to TJ-II stellarator databases and has been integrated into its remote participation system.
doi_str_mv 10.1016/j.fusengdes.2007.09.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31741896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379607004978</els_id><sourcerecordid>31741896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-d52ab914d2f5d6177fa805aac08ebda9f7b720d8159039e9559763ba29315da43</originalsourceid><addsrcrecordid>eNqFkDFv2zAQhYmgAeqm-Q3l0m5SSNESxTFI6yaAgS7tkIk4kUeHhkSlPNlF_n1pOMga4IBbvvfe3WPsixS1FLK72dfhQJh2HqluhNC1MLWQ8oKtZK9VpaXpPrCVMI2olDbdR_aJaC-E1GVW7PE7LMCnmGLa8QXdU4p_D8jDnHkAWnjGJUc8wsjnwClOcYTM_8ERCzERj4lvDhTnxCcgikfkvvgNQEif2WWAkfD6dV-xP5sfv-_uq-2vnw93t9vKKd0tlW8bGIxc-ya0vpNaB-hFC-BEj4MHE_SgG-F72RqhDJq2NbpTAzRGydbDWl2xb2ff5zyX02mxUySH4wgJ5wNZJfVa9qYroD6DLs9EGYN9znGC_GKlsKcq7d6-VWlPVVphbKmyKL--RgA5GEOG5CK9yQuqdG9M4W7PHJZ_jxGzJRcxOfQxo1usn-O7Wf8B19GPZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31741896</pqid></control><display><type>article</type><title>Data mining technique for fast retrieval of similar waveforms in Fusion massive databases</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Vega, J. ; Pereira, A. ; Portas, A. ; Dormido-Canto, S. ; Farias, G. ; Dormido, R. ; Sánchez, J. ; Duro, N. ; Santos, M. ; Sánchez, E. ; Pajares, G.</creator><creatorcontrib>Vega, J. ; Pereira, A. ; Portas, A. ; Dormido-Canto, S. ; Farias, G. ; Dormido, R. ; Sánchez, J. ; Duro, N. ; Santos, M. ; Sánchez, E. ; Pajares, G.</creatorcontrib><description>Fusion measurement systems generate similar waveforms for reproducible behavior. A major difficulty related to data analysis is the identification, in a rapid and automated way, of a set of discharges with comparable behaviour, i.e. discharges with “similar” waveforms. Here we introduce a new technique for rapid searching and retrieval of “similar” signals. The approach consists of building a classification system that avoids traversing the whole database looking for similarities. The classification system diminishes the problem dimensionality (by means of waveform feature extraction) and reduces the searching space to just the most probable “similar” waveforms (clustering techniques). In the searching procedure, the input waveform is classified in any of the existing clusters. Then, a similarity measure is computed between the input signal and all cluster elements in order to identify the most similar waveforms. The inner product of normalized vectors is used as the similarity measure as it allows the searching process to be independent of signal gain and polarity. This development has been applied recently to TJ-II stellarator databases and has been integrated into its remote participation system.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2007.09.011</identifier><identifier>CODEN: FEDEEE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Data mining ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fusion databases ; Installations for energy generation and conversion: thermal and electrical energy ; Pattern recognition ; Similar waveforms ; TJ-II</subject><ispartof>Fusion engineering and design, 2008, Vol.83 (1), p.132-139</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-d52ab914d2f5d6177fa805aac08ebda9f7b720d8159039e9559763ba29315da43</citedby><cites>FETCH-LOGICAL-c376t-d52ab914d2f5d6177fa805aac08ebda9f7b720d8159039e9559763ba29315da43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0920379607004978$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20037899$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vega, J.</creatorcontrib><creatorcontrib>Pereira, A.</creatorcontrib><creatorcontrib>Portas, A.</creatorcontrib><creatorcontrib>Dormido-Canto, S.</creatorcontrib><creatorcontrib>Farias, G.</creatorcontrib><creatorcontrib>Dormido, R.</creatorcontrib><creatorcontrib>Sánchez, J.</creatorcontrib><creatorcontrib>Duro, N.</creatorcontrib><creatorcontrib>Santos, M.</creatorcontrib><creatorcontrib>Sánchez, E.</creatorcontrib><creatorcontrib>Pajares, G.</creatorcontrib><title>Data mining technique for fast retrieval of similar waveforms in Fusion massive databases</title><title>Fusion engineering and design</title><description>Fusion measurement systems generate similar waveforms for reproducible behavior. A major difficulty related to data analysis is the identification, in a rapid and automated way, of a set of discharges with comparable behaviour, i.e. discharges with “similar” waveforms. Here we introduce a new technique for rapid searching and retrieval of “similar” signals. The approach consists of building a classification system that avoids traversing the whole database looking for similarities. The classification system diminishes the problem dimensionality (by means of waveform feature extraction) and reduces the searching space to just the most probable “similar” waveforms (clustering techniques). In the searching procedure, the input waveform is classified in any of the existing clusters. Then, a similarity measure is computed between the input signal and all cluster elements in order to identify the most similar waveforms. The inner product of normalized vectors is used as the similarity measure as it allows the searching process to be independent of signal gain and polarity. This development has been applied recently to TJ-II stellarator databases and has been integrated into its remote participation system.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Data mining</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fusion databases</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Pattern recognition</subject><subject>Similar waveforms</subject><subject>TJ-II</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkDFv2zAQhYmgAeqm-Q3l0m5SSNESxTFI6yaAgS7tkIk4kUeHhkSlPNlF_n1pOMga4IBbvvfe3WPsixS1FLK72dfhQJh2HqluhNC1MLWQ8oKtZK9VpaXpPrCVMI2olDbdR_aJaC-E1GVW7PE7LMCnmGLa8QXdU4p_D8jDnHkAWnjGJUc8wsjnwClOcYTM_8ERCzERj4lvDhTnxCcgikfkvvgNQEif2WWAkfD6dV-xP5sfv-_uq-2vnw93t9vKKd0tlW8bGIxc-ya0vpNaB-hFC-BEj4MHE_SgG-F72RqhDJq2NbpTAzRGydbDWl2xb2ff5zyX02mxUySH4wgJ5wNZJfVa9qYroD6DLs9EGYN9znGC_GKlsKcq7d6-VWlPVVphbKmyKL--RgA5GEOG5CK9yQuqdG9M4W7PHJZ_jxGzJRcxOfQxo1usn-O7Wf8B19GPZA</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Vega, J.</creator><creator>Pereira, A.</creator><creator>Portas, A.</creator><creator>Dormido-Canto, S.</creator><creator>Farias, G.</creator><creator>Dormido, R.</creator><creator>Sánchez, J.</creator><creator>Duro, N.</creator><creator>Santos, M.</creator><creator>Sánchez, E.</creator><creator>Pajares, G.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>2008</creationdate><title>Data mining technique for fast retrieval of similar waveforms in Fusion massive databases</title><author>Vega, J. ; Pereira, A. ; Portas, A. ; Dormido-Canto, S. ; Farias, G. ; Dormido, R. ; Sánchez, J. ; Duro, N. ; Santos, M. ; Sánchez, E. ; Pajares, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-d52ab914d2f5d6177fa805aac08ebda9f7b720d8159039e9559763ba29315da43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Data mining</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fusion databases</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Pattern recognition</topic><topic>Similar waveforms</topic><topic>TJ-II</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vega, J.</creatorcontrib><creatorcontrib>Pereira, A.</creatorcontrib><creatorcontrib>Portas, A.</creatorcontrib><creatorcontrib>Dormido-Canto, S.</creatorcontrib><creatorcontrib>Farias, G.</creatorcontrib><creatorcontrib>Dormido, R.</creatorcontrib><creatorcontrib>Sánchez, J.</creatorcontrib><creatorcontrib>Duro, N.</creatorcontrib><creatorcontrib>Santos, M.</creatorcontrib><creatorcontrib>Sánchez, E.</creatorcontrib><creatorcontrib>Pajares, G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vega, J.</au><au>Pereira, A.</au><au>Portas, A.</au><au>Dormido-Canto, S.</au><au>Farias, G.</au><au>Dormido, R.</au><au>Sánchez, J.</au><au>Duro, N.</au><au>Santos, M.</au><au>Sánchez, E.</au><au>Pajares, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data mining technique for fast retrieval of similar waveforms in Fusion massive databases</atitle><jtitle>Fusion engineering and design</jtitle><date>2008</date><risdate>2008</risdate><volume>83</volume><issue>1</issue><spage>132</spage><epage>139</epage><pages>132-139</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><coden>FEDEEE</coden><abstract>Fusion measurement systems generate similar waveforms for reproducible behavior. A major difficulty related to data analysis is the identification, in a rapid and automated way, of a set of discharges with comparable behaviour, i.e. discharges with “similar” waveforms. Here we introduce a new technique for rapid searching and retrieval of “similar” signals. The approach consists of building a classification system that avoids traversing the whole database looking for similarities. The classification system diminishes the problem dimensionality (by means of waveform feature extraction) and reduces the searching space to just the most probable “similar” waveforms (clustering techniques). In the searching procedure, the input waveform is classified in any of the existing clusters. Then, a similarity measure is computed between the input signal and all cluster elements in order to identify the most similar waveforms. The inner product of normalized vectors is used as the similarity measure as it allows the searching process to be independent of signal gain and polarity. This development has been applied recently to TJ-II stellarator databases and has been integrated into its remote participation system.</abstract><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2007.09.011</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-3796
ispartof Fusion engineering and design, 2008, Vol.83 (1), p.132-139
issn 0920-3796
1873-7196
language eng
recordid cdi_proquest_miscellaneous_31741896
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Controled nuclear fusion plants
Data mining
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fusion databases
Installations for energy generation and conversion: thermal and electrical energy
Pattern recognition
Similar waveforms
TJ-II
title Data mining technique for fast retrieval of similar waveforms in Fusion massive databases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20mining%20technique%20for%20fast%20retrieval%20of%20similar%20waveforms%20in%20Fusion%20massive%20databases&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Vega,%20J.&rft.date=2008&rft.volume=83&rft.issue=1&rft.spage=132&rft.epage=139&rft.pages=132-139&rft.issn=0920-3796&rft.eissn=1873-7196&rft.coden=FEDEEE&rft_id=info:doi/10.1016/j.fusengdes.2007.09.011&rft_dat=%3Cproquest_cross%3E31741896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31741896&rft_id=info:pmid/&rft_els_id=S0920379607004978&rfr_iscdi=true