AC TIG welding with single-component oxide activating flux for AZ31B magnesium alloys
Magnesium-based alloys are finding extensive applications foreground in aerospace and automotive applications. Weldability of magnesium alloys has recently been investigated with a variety of processes. In this article, the activating flux TIG (ATIG) welding of magnesium alloys with three single-com...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2008-02, Vol.43 (4), p.1382-1388 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1388 |
---|---|
container_issue | 4 |
container_start_page | 1382 |
container_title | Journal of materials science |
container_volume | 43 |
creator | Zhang, Zhaodong Liu, Liming Sun, Hao Wang, Lai |
description | Magnesium-based alloys are finding extensive applications foreground in aerospace and automotive applications. Weldability of magnesium alloys has recently been investigated with a variety of processes. In this article, the activating flux TIG (ATIG) welding of magnesium alloys with three single-component fluxes (TiO
2
, Cr
2
O
3
and SiO
2
) under alternating current (AC) mode was studied. The effects of welding speed, weld current and electrode gap on the weld shape and the weld arc voltage in AC TIG welding with oxide fluxes were investigated on an AZ31B magnesium alloy substrate. The mechanisms of oxide fluxes on the arc shape and the arc voltage on the weld shape are discussed. The result showed that the TiO
2
and Cr
2
O
3
increase the weld penetration of AC TIG welding of magnesium with good bead cosmetics. The SiO
2
increased the weld penetration with very poor formation of the weld surface. However, the arc voltage decreased with the used of TiO
2
flux, and increased with the used of Cr
2
O
3
flux. The mechanism of TiO
2
and Cr
2
O
3
fluxes increasing penetration should not accord with the “arc constriction”. It would comply with some potential effects of the flux interacting with the liquid metal of fusion zone. |
doi_str_mv | 10.1007/s10853-007-2299-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31734748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082196026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-45ae3250e5e8311539abe21624bff1af4be448ff54f0772cd9e66092a39782a43</originalsourceid><addsrcrecordid>eNp9kUtrHDEQhEVwIGsnPyA3QYjJRU53S5rHcbPEDzDkYl9yGbSz0maMZrSRZuz1v7eGNQkY7JMK9FXR3cXYZ4QzBCi_J4RKS5GlIKprsX_HFqhLKVQF8ogtAIgEqQI_sOOU7gBAl4QLdrtc8ZurC_5g_aYbtvyhG__wlJW3og39Lgx2GHnYdxvLTTt292acMeenPXch8uVviT94b7aDTd3Uc-N9eEwf2XtnfLKfnt8Tdnv-82Z1Ka5_XVytlteiVQijUNpYSRqstpVE1LI2a0tYkFo7h8aptVWqck4rB2VJ7aa2RQE1GVmXFRklT9jpIXcXw9_JprHpu9Ra781gw5QaiaVUpaoy-O1NMF-PsC6Aiox-eYHehSkOeY2GSNeFRkKZKTxQbQwpReuaXex6Ex9zVDM30hwaaWY5N9Lss-frc7JJrfEumqHt0j8jAVTZM29FBy7lr2Fr4_8JXg9_AkWymUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259651213</pqid></control><display><type>article</type><title>AC TIG welding with single-component oxide activating flux for AZ31B magnesium alloys</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Zhaodong ; Liu, Liming ; Sun, Hao ; Wang, Lai</creator><creatorcontrib>Zhang, Zhaodong ; Liu, Liming ; Sun, Hao ; Wang, Lai</creatorcontrib><description>Magnesium-based alloys are finding extensive applications foreground in aerospace and automotive applications. Weldability of magnesium alloys has recently been investigated with a variety of processes. In this article, the activating flux TIG (ATIG) welding of magnesium alloys with three single-component fluxes (TiO
2
, Cr
2
O
3
and SiO
2
) under alternating current (AC) mode was studied. The effects of welding speed, weld current and electrode gap on the weld shape and the weld arc voltage in AC TIG welding with oxide fluxes were investigated on an AZ31B magnesium alloy substrate. The mechanisms of oxide fluxes on the arc shape and the arc voltage on the weld shape are discussed. The result showed that the TiO
2
and Cr
2
O
3
increase the weld penetration of AC TIG welding of magnesium with good bead cosmetics. The SiO
2
increased the weld penetration with very poor formation of the weld surface. However, the arc voltage decreased with the used of TiO
2
flux, and increased with the used of Cr
2
O
3
flux. The mechanism of TiO
2
and Cr
2
O
3
fluxes increasing penetration should not accord with the “arc constriction”. It would comply with some potential effects of the flux interacting with the liquid metal of fusion zone.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-007-2299-x</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alternating current ; Applied sciences ; Arc welding ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromium oxides ; Classical Mechanics ; Cosmetics ; Cross-disciplinary physics: materials science; rheology ; Crystallography and Scattering Methods ; Electric potential ; Exact sciences and technology ; Flux ; Fluxes ; Gas tungsten arc welding ; Joining, thermal cutting: metallurgical aspects ; Liquid metals ; Magnesium ; Magnesium alloys ; Magnesium base alloys ; Materials Science ; Metals. Metallurgy ; Other topics in materials science ; Penetration ; Physics ; Polymer Sciences ; Silicon dioxide ; Solid Mechanics ; Substrates ; Titanium dioxide ; Welded joints ; Welding ; Welding fluxes</subject><ispartof>Journal of materials science, 2008-02, Vol.43 (4), p.1382-1388</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><rights>2008 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2007). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-45ae3250e5e8311539abe21624bff1af4be448ff54f0772cd9e66092a39782a43</citedby><cites>FETCH-LOGICAL-c410t-45ae3250e5e8311539abe21624bff1af4be448ff54f0772cd9e66092a39782a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-007-2299-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-007-2299-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20081084$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhaodong</creatorcontrib><creatorcontrib>Liu, Liming</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Wang, Lai</creatorcontrib><title>AC TIG welding with single-component oxide activating flux for AZ31B magnesium alloys</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Magnesium-based alloys are finding extensive applications foreground in aerospace and automotive applications. Weldability of magnesium alloys has recently been investigated with a variety of processes. In this article, the activating flux TIG (ATIG) welding of magnesium alloys with three single-component fluxes (TiO
2
, Cr
2
O
3
and SiO
2
) under alternating current (AC) mode was studied. The effects of welding speed, weld current and electrode gap on the weld shape and the weld arc voltage in AC TIG welding with oxide fluxes were investigated on an AZ31B magnesium alloy substrate. The mechanisms of oxide fluxes on the arc shape and the arc voltage on the weld shape are discussed. The result showed that the TiO
2
and Cr
2
O
3
increase the weld penetration of AC TIG welding of magnesium with good bead cosmetics. The SiO
2
increased the weld penetration with very poor formation of the weld surface. However, the arc voltage decreased with the used of TiO
2
flux, and increased with the used of Cr
2
O
3
flux. The mechanism of TiO
2
and Cr
2
O
3
fluxes increasing penetration should not accord with the “arc constriction”. It would comply with some potential effects of the flux interacting with the liquid metal of fusion zone.</description><subject>Alternating current</subject><subject>Applied sciences</subject><subject>Arc welding</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromium oxides</subject><subject>Classical Mechanics</subject><subject>Cosmetics</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallography and Scattering Methods</subject><subject>Electric potential</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>Fluxes</subject><subject>Gas tungsten arc welding</subject><subject>Joining, thermal cutting: metallurgical aspects</subject><subject>Liquid metals</subject><subject>Magnesium</subject><subject>Magnesium alloys</subject><subject>Magnesium base alloys</subject><subject>Materials Science</subject><subject>Metals. Metallurgy</subject><subject>Other topics in materials science</subject><subject>Penetration</subject><subject>Physics</subject><subject>Polymer Sciences</subject><subject>Silicon dioxide</subject><subject>Solid Mechanics</subject><subject>Substrates</subject><subject>Titanium dioxide</subject><subject>Welded joints</subject><subject>Welding</subject><subject>Welding fluxes</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUtrHDEQhEVwIGsnPyA3QYjJRU53S5rHcbPEDzDkYl9yGbSz0maMZrSRZuz1v7eGNQkY7JMK9FXR3cXYZ4QzBCi_J4RKS5GlIKprsX_HFqhLKVQF8ogtAIgEqQI_sOOU7gBAl4QLdrtc8ZurC_5g_aYbtvyhG__wlJW3og39Lgx2GHnYdxvLTTt292acMeenPXch8uVviT94b7aDTd3Uc-N9eEwf2XtnfLKfnt8Tdnv-82Z1Ka5_XVytlteiVQijUNpYSRqstpVE1LI2a0tYkFo7h8aptVWqck4rB2VJ7aa2RQE1GVmXFRklT9jpIXcXw9_JprHpu9Ra781gw5QaiaVUpaoy-O1NMF-PsC6Aiox-eYHehSkOeY2GSNeFRkKZKTxQbQwpReuaXex6Ex9zVDM30hwaaWY5N9Lss-frc7JJrfEumqHt0j8jAVTZM29FBy7lr2Fr4_8JXg9_AkWymUk</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Zhang, Zhaodong</creator><creator>Liu, Liming</creator><creator>Sun, Hao</creator><creator>Wang, Lai</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20080201</creationdate><title>AC TIG welding with single-component oxide activating flux for AZ31B magnesium alloys</title><author>Zhang, Zhaodong ; Liu, Liming ; Sun, Hao ; Wang, Lai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-45ae3250e5e8311539abe21624bff1af4be448ff54f0772cd9e66092a39782a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alternating current</topic><topic>Applied sciences</topic><topic>Arc welding</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromium oxides</topic><topic>Classical Mechanics</topic><topic>Cosmetics</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallography and Scattering Methods</topic><topic>Electric potential</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>Fluxes</topic><topic>Gas tungsten arc welding</topic><topic>Joining, thermal cutting: metallurgical aspects</topic><topic>Liquid metals</topic><topic>Magnesium</topic><topic>Magnesium alloys</topic><topic>Magnesium base alloys</topic><topic>Materials Science</topic><topic>Metals. Metallurgy</topic><topic>Other topics in materials science</topic><topic>Penetration</topic><topic>Physics</topic><topic>Polymer Sciences</topic><topic>Silicon dioxide</topic><topic>Solid Mechanics</topic><topic>Substrates</topic><topic>Titanium dioxide</topic><topic>Welded joints</topic><topic>Welding</topic><topic>Welding fluxes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhaodong</creatorcontrib><creatorcontrib>Liu, Liming</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Wang, Lai</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhaodong</au><au>Liu, Liming</au><au>Sun, Hao</au><au>Wang, Lai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AC TIG welding with single-component oxide activating flux for AZ31B magnesium alloys</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2008-02-01</date><risdate>2008</risdate><volume>43</volume><issue>4</issue><spage>1382</spage><epage>1388</epage><pages>1382-1388</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>Magnesium-based alloys are finding extensive applications foreground in aerospace and automotive applications. Weldability of magnesium alloys has recently been investigated with a variety of processes. In this article, the activating flux TIG (ATIG) welding of magnesium alloys with three single-component fluxes (TiO
2
, Cr
2
O
3
and SiO
2
) under alternating current (AC) mode was studied. The effects of welding speed, weld current and electrode gap on the weld shape and the weld arc voltage in AC TIG welding with oxide fluxes were investigated on an AZ31B magnesium alloy substrate. The mechanisms of oxide fluxes on the arc shape and the arc voltage on the weld shape are discussed. The result showed that the TiO
2
and Cr
2
O
3
increase the weld penetration of AC TIG welding of magnesium with good bead cosmetics. The SiO
2
increased the weld penetration with very poor formation of the weld surface. However, the arc voltage decreased with the used of TiO
2
flux, and increased with the used of Cr
2
O
3
flux. The mechanism of TiO
2
and Cr
2
O
3
fluxes increasing penetration should not accord with the “arc constriction”. It would comply with some potential effects of the flux interacting with the liquid metal of fusion zone.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-007-2299-x</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2008-02, Vol.43 (4), p.1382-1388 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_31734748 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alternating current Applied sciences Arc welding Characterization and Evaluation of Materials Chemistry and Materials Science Chromium oxides Classical Mechanics Cosmetics Cross-disciplinary physics: materials science rheology Crystallography and Scattering Methods Electric potential Exact sciences and technology Flux Fluxes Gas tungsten arc welding Joining, thermal cutting: metallurgical aspects Liquid metals Magnesium Magnesium alloys Magnesium base alloys Materials Science Metals. Metallurgy Other topics in materials science Penetration Physics Polymer Sciences Silicon dioxide Solid Mechanics Substrates Titanium dioxide Welded joints Welding Welding fluxes |
title | AC TIG welding with single-component oxide activating flux for AZ31B magnesium alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T02%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AC%20TIG%20welding%20with%20single-component%20oxide%20activating%20flux%20for%20AZ31B%20magnesium%20alloys&rft.jtitle=Journal%20of%20materials%20science&rft.au=Zhang,%20Zhaodong&rft.date=2008-02-01&rft.volume=43&rft.issue=4&rft.spage=1382&rft.epage=1388&rft.pages=1382-1388&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-007-2299-x&rft_dat=%3Cproquest_cross%3E1082196026%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259651213&rft_id=info:pmid/&rfr_iscdi=true |