A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies

Large-scale whole-genome sequencing (WGS) studies have improved our understanding of the contributions of coding and noncoding rare variants to complex human traits. Leveraging association effect sizes across multiple traits in WGS rare variant association analysis can improve statistical power over...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Computational Science 2025-02
Hauptverfasser: Li, Xihao, Chen, Han, Selvaraj, Margaret Sunitha, Van Buren, Eric, Zhou, Hufeng, Wang, Yuxuan, Sun, Ryan, McCaw, Zachary R, Yu, Zhi, Jiang, Min-Zhi, DiCorpo, Daniel, Gaynor, Sheila M, Dey, Rounak, Arnett, Donna K, Benjamin, Emelia J, Bis, Joshua C, Blangero, John, Boerwinkle, Eric, Bowden, Donald W, Brody, Jennifer A, Cade, Brian E, Carson, April P, Carlson, Jenna C, Chami, Nathalie, Chen, Yii-Der Ida, Curran, Joanne E, de Vries, Paul S, Fornage, Myriam, Franceschini, Nora, Freedman, Barry I, Gu, Charles, Heard-Costa, Nancy L, He, Jiang, Hou, Lifang, Hung, Yi-Jen, Irvin, Marguerite R, Kaplan, Robert C, Kardia, Sharon L R, Kelly, Tanika N, Konigsberg, Iain, Kooperberg, Charles, Kral, Brian G, Li, Changwei, Li, Yun, Lin, Honghuang, Liu, Ching-Ti, Loos, Ruth J F, Mahaney, Michael C, Martin, Lisa W, Mathias, Rasika A, Mitchell, Braxton D, Montasser, May E, Morrison, Alanna C, Naseri, Take, North, Kari E, Palmer, Nicholette D, Peyser, Patricia A, Psaty, Bruce M, Redline, Susan, Reiner, Alexander P, Rich, Stephen S, Sitlani, Colleen M, Smith, Jennifer A, Taylor, Kent D, Tiwari, Hemant K, Vasan, Ramachandran S, Viali, Satupa'itea, Wang, Zhe, Wessel, Jennifer, Yanek, Lisa R, Yu, Bing, Dupuis, Josée, Meigs, James B, Auer, Paul L, Raffield, Laura M, Manning, Alisa K, Rice, Kenneth M, Rotter, Jerome I, Peloso, Gina M, Natarajan, Pradeep, Li, Zilin, Liu, Zhonghua, Lin, Xihong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Nature Computational Science
container_volume
creator Li, Xihao
Chen, Han
Selvaraj, Margaret Sunitha
Van Buren, Eric
Zhou, Hufeng
Wang, Yuxuan
Sun, Ryan
McCaw, Zachary R
Yu, Zhi
Jiang, Min-Zhi
DiCorpo, Daniel
Gaynor, Sheila M
Dey, Rounak
Arnett, Donna K
Benjamin, Emelia J
Bis, Joshua C
Blangero, John
Boerwinkle, Eric
Bowden, Donald W
Brody, Jennifer A
Cade, Brian E
Carson, April P
Carlson, Jenna C
Chami, Nathalie
Chen, Yii-Der Ida
Curran, Joanne E
de Vries, Paul S
Fornage, Myriam
Franceschini, Nora
Freedman, Barry I
Gu, Charles
Heard-Costa, Nancy L
He, Jiang
Hou, Lifang
Hung, Yi-Jen
Irvin, Marguerite R
Kaplan, Robert C
Kardia, Sharon L R
Kelly, Tanika N
Konigsberg, Iain
Kooperberg, Charles
Kral, Brian G
Li, Changwei
Li, Yun
Lin, Honghuang
Liu, Ching-Ti
Loos, Ruth J F
Mahaney, Michael C
Martin, Lisa W
Mathias, Rasika A
Mitchell, Braxton D
Montasser, May E
Morrison, Alanna C
Naseri, Take
North, Kari E
Palmer, Nicholette D
Peyser, Patricia A
Psaty, Bruce M
Redline, Susan
Reiner, Alexander P
Rich, Stephen S
Sitlani, Colleen M
Smith, Jennifer A
Taylor, Kent D
Tiwari, Hemant K
Vasan, Ramachandran S
Viali, Satupa'itea
Wang, Zhe
Wessel, Jennifer
Yanek, Lisa R
Yu, Bing
Dupuis, Josée
Meigs, James B
Auer, Paul L
Raffield, Laura M
Manning, Alisa K
Rice, Kenneth M
Rotter, Jerome I
Peloso, Gina M
Natarajan, Pradeep
Li, Zilin
Liu, Zhonghua
Lin, Xihong
description Large-scale whole-genome sequencing (WGS) studies have improved our understanding of the contributions of coding and noncoding rare variants to complex human traits. Leveraging association effect sizes across multiple traits in WGS rare variant association analysis can improve statistical power over single-trait analysis, and also detect pleiotropic genes and regions. Existing multi-trait methods have limited ability to perform rare variant analysis of large-scale WGS data. We propose MultiSTAAR, a statistical framework and computationally scalable analytical pipeline for functionally informed multi-trait rare variant analysis in large-scale WGS studies. MultiSTAAR accounts for relatedness, population structure and correlation among phenotypes by jointly analyzing multiple traits, and further empowers rare variant association analysis by incorporating multiple functional annotations. We applied MultiSTAAR to jointly analyze three lipid traits in 61,838 multi-ethnic samples from the Trans-Omics for Precision Medicine (TOPMed) Program. We discovered and replicated new associations with lipid traits missed by single-trait analysis.
doi_str_mv 10.1038/s43588-024-00764-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3164655597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3164655597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c996-cb89f4bdabeda84bdb3d23335c64c0968b0ee23900ada6fcbb28771566dc9e313</originalsourceid><addsrcrecordid>eNpNkMtOxCAUhonRqNF5AReGpRuUQqGwnEy8JSZuZk9O6emI0lah1fj2Vmc0rs6_-C8nHyFnBb8suDRXuZTKGMZFyTivdMnMHjkWWgtmSlXt_9NHZJHzM-dcqEJyLQ_JkbRWcMX1MYlLmkcYQx6Dh0jbBB1-DOmFtkOi3RTHwMYEYaQJEtJ3SAH6kUIP8TOHTENPI6QNsjynkX48DRHZBvuhQ5rxbcLeh34zT0xNwHxKDlqIGRe7e0LWN9fr1R17eLy9Xy0fmLdWM18b25Z1AzU2YGZRy0ZIKZXXpedWm5ojCmk5hwZ06-tamKoqlNaNtygLeUIutrWvaZhfyKPrQvYYI_Q4TNnJQpdaKWWr2Sq2Vp-GnBO27jWFDtKnK7j75uy2nN3M2f1wdmYOne_6p7rD5i_yS1V-AeDkexI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3164655597</pqid></control><display><type>article</type><title>A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Li, Xihao ; Chen, Han ; Selvaraj, Margaret Sunitha ; Van Buren, Eric ; Zhou, Hufeng ; Wang, Yuxuan ; Sun, Ryan ; McCaw, Zachary R ; Yu, Zhi ; Jiang, Min-Zhi ; DiCorpo, Daniel ; Gaynor, Sheila M ; Dey, Rounak ; Arnett, Donna K ; Benjamin, Emelia J ; Bis, Joshua C ; Blangero, John ; Boerwinkle, Eric ; Bowden, Donald W ; Brody, Jennifer A ; Cade, Brian E ; Carson, April P ; Carlson, Jenna C ; Chami, Nathalie ; Chen, Yii-Der Ida ; Curran, Joanne E ; de Vries, Paul S ; Fornage, Myriam ; Franceschini, Nora ; Freedman, Barry I ; Gu, Charles ; Heard-Costa, Nancy L ; He, Jiang ; Hou, Lifang ; Hung, Yi-Jen ; Irvin, Marguerite R ; Kaplan, Robert C ; Kardia, Sharon L R ; Kelly, Tanika N ; Konigsberg, Iain ; Kooperberg, Charles ; Kral, Brian G ; Li, Changwei ; Li, Yun ; Lin, Honghuang ; Liu, Ching-Ti ; Loos, Ruth J F ; Mahaney, Michael C ; Martin, Lisa W ; Mathias, Rasika A ; Mitchell, Braxton D ; Montasser, May E ; Morrison, Alanna C ; Naseri, Take ; North, Kari E ; Palmer, Nicholette D ; Peyser, Patricia A ; Psaty, Bruce M ; Redline, Susan ; Reiner, Alexander P ; Rich, Stephen S ; Sitlani, Colleen M ; Smith, Jennifer A ; Taylor, Kent D ; Tiwari, Hemant K ; Vasan, Ramachandran S ; Viali, Satupa'itea ; Wang, Zhe ; Wessel, Jennifer ; Yanek, Lisa R ; Yu, Bing ; Dupuis, Josée ; Meigs, James B ; Auer, Paul L ; Raffield, Laura M ; Manning, Alisa K ; Rice, Kenneth M ; Rotter, Jerome I ; Peloso, Gina M ; Natarajan, Pradeep ; Li, Zilin ; Liu, Zhonghua ; Lin, Xihong</creator><creatorcontrib>Li, Xihao ; Chen, Han ; Selvaraj, Margaret Sunitha ; Van Buren, Eric ; Zhou, Hufeng ; Wang, Yuxuan ; Sun, Ryan ; McCaw, Zachary R ; Yu, Zhi ; Jiang, Min-Zhi ; DiCorpo, Daniel ; Gaynor, Sheila M ; Dey, Rounak ; Arnett, Donna K ; Benjamin, Emelia J ; Bis, Joshua C ; Blangero, John ; Boerwinkle, Eric ; Bowden, Donald W ; Brody, Jennifer A ; Cade, Brian E ; Carson, April P ; Carlson, Jenna C ; Chami, Nathalie ; Chen, Yii-Der Ida ; Curran, Joanne E ; de Vries, Paul S ; Fornage, Myriam ; Franceschini, Nora ; Freedman, Barry I ; Gu, Charles ; Heard-Costa, Nancy L ; He, Jiang ; Hou, Lifang ; Hung, Yi-Jen ; Irvin, Marguerite R ; Kaplan, Robert C ; Kardia, Sharon L R ; Kelly, Tanika N ; Konigsberg, Iain ; Kooperberg, Charles ; Kral, Brian G ; Li, Changwei ; Li, Yun ; Lin, Honghuang ; Liu, Ching-Ti ; Loos, Ruth J F ; Mahaney, Michael C ; Martin, Lisa W ; Mathias, Rasika A ; Mitchell, Braxton D ; Montasser, May E ; Morrison, Alanna C ; Naseri, Take ; North, Kari E ; Palmer, Nicholette D ; Peyser, Patricia A ; Psaty, Bruce M ; Redline, Susan ; Reiner, Alexander P ; Rich, Stephen S ; Sitlani, Colleen M ; Smith, Jennifer A ; Taylor, Kent D ; Tiwari, Hemant K ; Vasan, Ramachandran S ; Viali, Satupa'itea ; Wang, Zhe ; Wessel, Jennifer ; Yanek, Lisa R ; Yu, Bing ; Dupuis, Josée ; Meigs, James B ; Auer, Paul L ; Raffield, Laura M ; Manning, Alisa K ; Rice, Kenneth M ; Rotter, Jerome I ; Peloso, Gina M ; Natarajan, Pradeep ; Li, Zilin ; Liu, Zhonghua ; Lin, Xihong ; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium</creatorcontrib><description>Large-scale whole-genome sequencing (WGS) studies have improved our understanding of the contributions of coding and noncoding rare variants to complex human traits. Leveraging association effect sizes across multiple traits in WGS rare variant association analysis can improve statistical power over single-trait analysis, and also detect pleiotropic genes and regions. Existing multi-trait methods have limited ability to perform rare variant analysis of large-scale WGS data. We propose MultiSTAAR, a statistical framework and computationally scalable analytical pipeline for functionally informed multi-trait rare variant analysis in large-scale WGS studies. MultiSTAAR accounts for relatedness, population structure and correlation among phenotypes by jointly analyzing multiple traits, and further empowers rare variant association analysis by incorporating multiple functional annotations. We applied MultiSTAAR to jointly analyze three lipid traits in 61,838 multi-ethnic samples from the Trans-Omics for Precision Medicine (TOPMed) Program. We discovered and replicated new associations with lipid traits missed by single-trait analysis.</description><identifier>ISSN: 2662-8457</identifier><identifier>EISSN: 2662-8457</identifier><identifier>DOI: 10.1038/s43588-024-00764-8</identifier><identifier>PMID: 39920506</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nature Computational Science, 2025-02</ispartof><rights>2025. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c996-cb89f4bdabeda84bdb3d23335c64c0968b0ee23900ada6fcbb28771566dc9e313</cites><orcidid>0000-0002-8527-8145 ; 0000-0003-4920-4744 ; 0000-0001-9117-0619 ; 0000-0001-6250-5723 ; 0000-0001-5502-063X ; 0000-0003-2871-3603 ; 0000-0001-7067-7752 ; 0000-0002-4829-8403 ; 0000-0003-3048-9823 ; 0000-0003-3872-7793 ; 0000-0002-8046-4969 ; 0000-0002-3409-1110 ; 0000-0003-4810-3474 ; 0000-0003-0275-5530 ; 0000-0001-9730-0306 ; 0000-0002-8903-0366 ; 0000-0002-9510-4923 ; 0000-0003-4076-2336 ; 0000-0003-1521-8945 ; 0000-0001-8151-0106 ; 0000-0002-8547-6424 ; 0000-0002-0703-0742 ; 0000-0002-7970-6756 ; 0000-0003-4352-0914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39920506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xihao</creatorcontrib><creatorcontrib>Chen, Han</creatorcontrib><creatorcontrib>Selvaraj, Margaret Sunitha</creatorcontrib><creatorcontrib>Van Buren, Eric</creatorcontrib><creatorcontrib>Zhou, Hufeng</creatorcontrib><creatorcontrib>Wang, Yuxuan</creatorcontrib><creatorcontrib>Sun, Ryan</creatorcontrib><creatorcontrib>McCaw, Zachary R</creatorcontrib><creatorcontrib>Yu, Zhi</creatorcontrib><creatorcontrib>Jiang, Min-Zhi</creatorcontrib><creatorcontrib>DiCorpo, Daniel</creatorcontrib><creatorcontrib>Gaynor, Sheila M</creatorcontrib><creatorcontrib>Dey, Rounak</creatorcontrib><creatorcontrib>Arnett, Donna K</creatorcontrib><creatorcontrib>Benjamin, Emelia J</creatorcontrib><creatorcontrib>Bis, Joshua C</creatorcontrib><creatorcontrib>Blangero, John</creatorcontrib><creatorcontrib>Boerwinkle, Eric</creatorcontrib><creatorcontrib>Bowden, Donald W</creatorcontrib><creatorcontrib>Brody, Jennifer A</creatorcontrib><creatorcontrib>Cade, Brian E</creatorcontrib><creatorcontrib>Carson, April P</creatorcontrib><creatorcontrib>Carlson, Jenna C</creatorcontrib><creatorcontrib>Chami, Nathalie</creatorcontrib><creatorcontrib>Chen, Yii-Der Ida</creatorcontrib><creatorcontrib>Curran, Joanne E</creatorcontrib><creatorcontrib>de Vries, Paul S</creatorcontrib><creatorcontrib>Fornage, Myriam</creatorcontrib><creatorcontrib>Franceschini, Nora</creatorcontrib><creatorcontrib>Freedman, Barry I</creatorcontrib><creatorcontrib>Gu, Charles</creatorcontrib><creatorcontrib>Heard-Costa, Nancy L</creatorcontrib><creatorcontrib>He, Jiang</creatorcontrib><creatorcontrib>Hou, Lifang</creatorcontrib><creatorcontrib>Hung, Yi-Jen</creatorcontrib><creatorcontrib>Irvin, Marguerite R</creatorcontrib><creatorcontrib>Kaplan, Robert C</creatorcontrib><creatorcontrib>Kardia, Sharon L R</creatorcontrib><creatorcontrib>Kelly, Tanika N</creatorcontrib><creatorcontrib>Konigsberg, Iain</creatorcontrib><creatorcontrib>Kooperberg, Charles</creatorcontrib><creatorcontrib>Kral, Brian G</creatorcontrib><creatorcontrib>Li, Changwei</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Lin, Honghuang</creatorcontrib><creatorcontrib>Liu, Ching-Ti</creatorcontrib><creatorcontrib>Loos, Ruth J F</creatorcontrib><creatorcontrib>Mahaney, Michael C</creatorcontrib><creatorcontrib>Martin, Lisa W</creatorcontrib><creatorcontrib>Mathias, Rasika A</creatorcontrib><creatorcontrib>Mitchell, Braxton D</creatorcontrib><creatorcontrib>Montasser, May E</creatorcontrib><creatorcontrib>Morrison, Alanna C</creatorcontrib><creatorcontrib>Naseri, Take</creatorcontrib><creatorcontrib>North, Kari E</creatorcontrib><creatorcontrib>Palmer, Nicholette D</creatorcontrib><creatorcontrib>Peyser, Patricia A</creatorcontrib><creatorcontrib>Psaty, Bruce M</creatorcontrib><creatorcontrib>Redline, Susan</creatorcontrib><creatorcontrib>Reiner, Alexander P</creatorcontrib><creatorcontrib>Rich, Stephen S</creatorcontrib><creatorcontrib>Sitlani, Colleen M</creatorcontrib><creatorcontrib>Smith, Jennifer A</creatorcontrib><creatorcontrib>Taylor, Kent D</creatorcontrib><creatorcontrib>Tiwari, Hemant K</creatorcontrib><creatorcontrib>Vasan, Ramachandran S</creatorcontrib><creatorcontrib>Viali, Satupa'itea</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Wessel, Jennifer</creatorcontrib><creatorcontrib>Yanek, Lisa R</creatorcontrib><creatorcontrib>Yu, Bing</creatorcontrib><creatorcontrib>Dupuis, Josée</creatorcontrib><creatorcontrib>Meigs, James B</creatorcontrib><creatorcontrib>Auer, Paul L</creatorcontrib><creatorcontrib>Raffield, Laura M</creatorcontrib><creatorcontrib>Manning, Alisa K</creatorcontrib><creatorcontrib>Rice, Kenneth M</creatorcontrib><creatorcontrib>Rotter, Jerome I</creatorcontrib><creatorcontrib>Peloso, Gina M</creatorcontrib><creatorcontrib>Natarajan, Pradeep</creatorcontrib><creatorcontrib>Li, Zilin</creatorcontrib><creatorcontrib>Liu, Zhonghua</creatorcontrib><creatorcontrib>Lin, Xihong</creatorcontrib><creatorcontrib>NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium</creatorcontrib><title>A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies</title><title>Nature Computational Science</title><addtitle>Nat Comput Sci</addtitle><description>Large-scale whole-genome sequencing (WGS) studies have improved our understanding of the contributions of coding and noncoding rare variants to complex human traits. Leveraging association effect sizes across multiple traits in WGS rare variant association analysis can improve statistical power over single-trait analysis, and also detect pleiotropic genes and regions. Existing multi-trait methods have limited ability to perform rare variant analysis of large-scale WGS data. We propose MultiSTAAR, a statistical framework and computationally scalable analytical pipeline for functionally informed multi-trait rare variant analysis in large-scale WGS studies. MultiSTAAR accounts for relatedness, population structure and correlation among phenotypes by jointly analyzing multiple traits, and further empowers rare variant association analysis by incorporating multiple functional annotations. We applied MultiSTAAR to jointly analyze three lipid traits in 61,838 multi-ethnic samples from the Trans-Omics for Precision Medicine (TOPMed) Program. We discovered and replicated new associations with lipid traits missed by single-trait analysis.</description><issn>2662-8457</issn><issn>2662-8457</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOxCAUhonRqNF5AReGpRuUQqGwnEy8JSZuZk9O6emI0lah1fj2Vmc0rs6_-C8nHyFnBb8suDRXuZTKGMZFyTivdMnMHjkWWgtmSlXt_9NHZJHzM-dcqEJyLQ_JkbRWcMX1MYlLmkcYQx6Dh0jbBB1-DOmFtkOi3RTHwMYEYaQJEtJ3SAH6kUIP8TOHTENPI6QNsjynkX48DRHZBvuhQ5rxbcLeh34zT0xNwHxKDlqIGRe7e0LWN9fr1R17eLy9Xy0fmLdWM18b25Z1AzU2YGZRy0ZIKZXXpedWm5ojCmk5hwZ06-tamKoqlNaNtygLeUIutrWvaZhfyKPrQvYYI_Q4TNnJQpdaKWWr2Sq2Vp-GnBO27jWFDtKnK7j75uy2nN3M2f1wdmYOne_6p7rD5i_yS1V-AeDkexI</recordid><startdate>20250207</startdate><enddate>20250207</enddate><creator>Li, Xihao</creator><creator>Chen, Han</creator><creator>Selvaraj, Margaret Sunitha</creator><creator>Van Buren, Eric</creator><creator>Zhou, Hufeng</creator><creator>Wang, Yuxuan</creator><creator>Sun, Ryan</creator><creator>McCaw, Zachary R</creator><creator>Yu, Zhi</creator><creator>Jiang, Min-Zhi</creator><creator>DiCorpo, Daniel</creator><creator>Gaynor, Sheila M</creator><creator>Dey, Rounak</creator><creator>Arnett, Donna K</creator><creator>Benjamin, Emelia J</creator><creator>Bis, Joshua C</creator><creator>Blangero, John</creator><creator>Boerwinkle, Eric</creator><creator>Bowden, Donald W</creator><creator>Brody, Jennifer A</creator><creator>Cade, Brian E</creator><creator>Carson, April P</creator><creator>Carlson, Jenna C</creator><creator>Chami, Nathalie</creator><creator>Chen, Yii-Der Ida</creator><creator>Curran, Joanne E</creator><creator>de Vries, Paul S</creator><creator>Fornage, Myriam</creator><creator>Franceschini, Nora</creator><creator>Freedman, Barry I</creator><creator>Gu, Charles</creator><creator>Heard-Costa, Nancy L</creator><creator>He, Jiang</creator><creator>Hou, Lifang</creator><creator>Hung, Yi-Jen</creator><creator>Irvin, Marguerite R</creator><creator>Kaplan, Robert C</creator><creator>Kardia, Sharon L R</creator><creator>Kelly, Tanika N</creator><creator>Konigsberg, Iain</creator><creator>Kooperberg, Charles</creator><creator>Kral, Brian G</creator><creator>Li, Changwei</creator><creator>Li, Yun</creator><creator>Lin, Honghuang</creator><creator>Liu, Ching-Ti</creator><creator>Loos, Ruth J F</creator><creator>Mahaney, Michael C</creator><creator>Martin, Lisa W</creator><creator>Mathias, Rasika A</creator><creator>Mitchell, Braxton D</creator><creator>Montasser, May E</creator><creator>Morrison, Alanna C</creator><creator>Naseri, Take</creator><creator>North, Kari E</creator><creator>Palmer, Nicholette D</creator><creator>Peyser, Patricia A</creator><creator>Psaty, Bruce M</creator><creator>Redline, Susan</creator><creator>Reiner, Alexander P</creator><creator>Rich, Stephen S</creator><creator>Sitlani, Colleen M</creator><creator>Smith, Jennifer A</creator><creator>Taylor, Kent D</creator><creator>Tiwari, Hemant K</creator><creator>Vasan, Ramachandran S</creator><creator>Viali, Satupa'itea</creator><creator>Wang, Zhe</creator><creator>Wessel, Jennifer</creator><creator>Yanek, Lisa R</creator><creator>Yu, Bing</creator><creator>Dupuis, Josée</creator><creator>Meigs, James B</creator><creator>Auer, Paul L</creator><creator>Raffield, Laura M</creator><creator>Manning, Alisa K</creator><creator>Rice, Kenneth M</creator><creator>Rotter, Jerome I</creator><creator>Peloso, Gina M</creator><creator>Natarajan, Pradeep</creator><creator>Li, Zilin</creator><creator>Liu, Zhonghua</creator><creator>Lin, Xihong</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8527-8145</orcidid><orcidid>https://orcid.org/0000-0003-4920-4744</orcidid><orcidid>https://orcid.org/0000-0001-9117-0619</orcidid><orcidid>https://orcid.org/0000-0001-6250-5723</orcidid><orcidid>https://orcid.org/0000-0001-5502-063X</orcidid><orcidid>https://orcid.org/0000-0003-2871-3603</orcidid><orcidid>https://orcid.org/0000-0001-7067-7752</orcidid><orcidid>https://orcid.org/0000-0002-4829-8403</orcidid><orcidid>https://orcid.org/0000-0003-3048-9823</orcidid><orcidid>https://orcid.org/0000-0003-3872-7793</orcidid><orcidid>https://orcid.org/0000-0002-8046-4969</orcidid><orcidid>https://orcid.org/0000-0002-3409-1110</orcidid><orcidid>https://orcid.org/0000-0003-4810-3474</orcidid><orcidid>https://orcid.org/0000-0003-0275-5530</orcidid><orcidid>https://orcid.org/0000-0001-9730-0306</orcidid><orcidid>https://orcid.org/0000-0002-8903-0366</orcidid><orcidid>https://orcid.org/0000-0002-9510-4923</orcidid><orcidid>https://orcid.org/0000-0003-4076-2336</orcidid><orcidid>https://orcid.org/0000-0003-1521-8945</orcidid><orcidid>https://orcid.org/0000-0001-8151-0106</orcidid><orcidid>https://orcid.org/0000-0002-8547-6424</orcidid><orcidid>https://orcid.org/0000-0002-0703-0742</orcidid><orcidid>https://orcid.org/0000-0002-7970-6756</orcidid><orcidid>https://orcid.org/0000-0003-4352-0914</orcidid></search><sort><creationdate>20250207</creationdate><title>A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies</title><author>Li, Xihao ; Chen, Han ; Selvaraj, Margaret Sunitha ; Van Buren, Eric ; Zhou, Hufeng ; Wang, Yuxuan ; Sun, Ryan ; McCaw, Zachary R ; Yu, Zhi ; Jiang, Min-Zhi ; DiCorpo, Daniel ; Gaynor, Sheila M ; Dey, Rounak ; Arnett, Donna K ; Benjamin, Emelia J ; Bis, Joshua C ; Blangero, John ; Boerwinkle, Eric ; Bowden, Donald W ; Brody, Jennifer A ; Cade, Brian E ; Carson, April P ; Carlson, Jenna C ; Chami, Nathalie ; Chen, Yii-Der Ida ; Curran, Joanne E ; de Vries, Paul S ; Fornage, Myriam ; Franceschini, Nora ; Freedman, Barry I ; Gu, Charles ; Heard-Costa, Nancy L ; He, Jiang ; Hou, Lifang ; Hung, Yi-Jen ; Irvin, Marguerite R ; Kaplan, Robert C ; Kardia, Sharon L R ; Kelly, Tanika N ; Konigsberg, Iain ; Kooperberg, Charles ; Kral, Brian G ; Li, Changwei ; Li, Yun ; Lin, Honghuang ; Liu, Ching-Ti ; Loos, Ruth J F ; Mahaney, Michael C ; Martin, Lisa W ; Mathias, Rasika A ; Mitchell, Braxton D ; Montasser, May E ; Morrison, Alanna C ; Naseri, Take ; North, Kari E ; Palmer, Nicholette D ; Peyser, Patricia A ; Psaty, Bruce M ; Redline, Susan ; Reiner, Alexander P ; Rich, Stephen S ; Sitlani, Colleen M ; Smith, Jennifer A ; Taylor, Kent D ; Tiwari, Hemant K ; Vasan, Ramachandran S ; Viali, Satupa'itea ; Wang, Zhe ; Wessel, Jennifer ; Yanek, Lisa R ; Yu, Bing ; Dupuis, Josée ; Meigs, James B ; Auer, Paul L ; Raffield, Laura M ; Manning, Alisa K ; Rice, Kenneth M ; Rotter, Jerome I ; Peloso, Gina M ; Natarajan, Pradeep ; Li, Zilin ; Liu, Zhonghua ; Lin, Xihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c996-cb89f4bdabeda84bdb3d23335c64c0968b0ee23900ada6fcbb28771566dc9e313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xihao</creatorcontrib><creatorcontrib>Chen, Han</creatorcontrib><creatorcontrib>Selvaraj, Margaret Sunitha</creatorcontrib><creatorcontrib>Van Buren, Eric</creatorcontrib><creatorcontrib>Zhou, Hufeng</creatorcontrib><creatorcontrib>Wang, Yuxuan</creatorcontrib><creatorcontrib>Sun, Ryan</creatorcontrib><creatorcontrib>McCaw, Zachary R</creatorcontrib><creatorcontrib>Yu, Zhi</creatorcontrib><creatorcontrib>Jiang, Min-Zhi</creatorcontrib><creatorcontrib>DiCorpo, Daniel</creatorcontrib><creatorcontrib>Gaynor, Sheila M</creatorcontrib><creatorcontrib>Dey, Rounak</creatorcontrib><creatorcontrib>Arnett, Donna K</creatorcontrib><creatorcontrib>Benjamin, Emelia J</creatorcontrib><creatorcontrib>Bis, Joshua C</creatorcontrib><creatorcontrib>Blangero, John</creatorcontrib><creatorcontrib>Boerwinkle, Eric</creatorcontrib><creatorcontrib>Bowden, Donald W</creatorcontrib><creatorcontrib>Brody, Jennifer A</creatorcontrib><creatorcontrib>Cade, Brian E</creatorcontrib><creatorcontrib>Carson, April P</creatorcontrib><creatorcontrib>Carlson, Jenna C</creatorcontrib><creatorcontrib>Chami, Nathalie</creatorcontrib><creatorcontrib>Chen, Yii-Der Ida</creatorcontrib><creatorcontrib>Curran, Joanne E</creatorcontrib><creatorcontrib>de Vries, Paul S</creatorcontrib><creatorcontrib>Fornage, Myriam</creatorcontrib><creatorcontrib>Franceschini, Nora</creatorcontrib><creatorcontrib>Freedman, Barry I</creatorcontrib><creatorcontrib>Gu, Charles</creatorcontrib><creatorcontrib>Heard-Costa, Nancy L</creatorcontrib><creatorcontrib>He, Jiang</creatorcontrib><creatorcontrib>Hou, Lifang</creatorcontrib><creatorcontrib>Hung, Yi-Jen</creatorcontrib><creatorcontrib>Irvin, Marguerite R</creatorcontrib><creatorcontrib>Kaplan, Robert C</creatorcontrib><creatorcontrib>Kardia, Sharon L R</creatorcontrib><creatorcontrib>Kelly, Tanika N</creatorcontrib><creatorcontrib>Konigsberg, Iain</creatorcontrib><creatorcontrib>Kooperberg, Charles</creatorcontrib><creatorcontrib>Kral, Brian G</creatorcontrib><creatorcontrib>Li, Changwei</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Lin, Honghuang</creatorcontrib><creatorcontrib>Liu, Ching-Ti</creatorcontrib><creatorcontrib>Loos, Ruth J F</creatorcontrib><creatorcontrib>Mahaney, Michael C</creatorcontrib><creatorcontrib>Martin, Lisa W</creatorcontrib><creatorcontrib>Mathias, Rasika A</creatorcontrib><creatorcontrib>Mitchell, Braxton D</creatorcontrib><creatorcontrib>Montasser, May E</creatorcontrib><creatorcontrib>Morrison, Alanna C</creatorcontrib><creatorcontrib>Naseri, Take</creatorcontrib><creatorcontrib>North, Kari E</creatorcontrib><creatorcontrib>Palmer, Nicholette D</creatorcontrib><creatorcontrib>Peyser, Patricia A</creatorcontrib><creatorcontrib>Psaty, Bruce M</creatorcontrib><creatorcontrib>Redline, Susan</creatorcontrib><creatorcontrib>Reiner, Alexander P</creatorcontrib><creatorcontrib>Rich, Stephen S</creatorcontrib><creatorcontrib>Sitlani, Colleen M</creatorcontrib><creatorcontrib>Smith, Jennifer A</creatorcontrib><creatorcontrib>Taylor, Kent D</creatorcontrib><creatorcontrib>Tiwari, Hemant K</creatorcontrib><creatorcontrib>Vasan, Ramachandran S</creatorcontrib><creatorcontrib>Viali, Satupa'itea</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Wessel, Jennifer</creatorcontrib><creatorcontrib>Yanek, Lisa R</creatorcontrib><creatorcontrib>Yu, Bing</creatorcontrib><creatorcontrib>Dupuis, Josée</creatorcontrib><creatorcontrib>Meigs, James B</creatorcontrib><creatorcontrib>Auer, Paul L</creatorcontrib><creatorcontrib>Raffield, Laura M</creatorcontrib><creatorcontrib>Manning, Alisa K</creatorcontrib><creatorcontrib>Rice, Kenneth M</creatorcontrib><creatorcontrib>Rotter, Jerome I</creatorcontrib><creatorcontrib>Peloso, Gina M</creatorcontrib><creatorcontrib>Natarajan, Pradeep</creatorcontrib><creatorcontrib>Li, Zilin</creatorcontrib><creatorcontrib>Liu, Zhonghua</creatorcontrib><creatorcontrib>Lin, Xihong</creatorcontrib><creatorcontrib>NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature Computational Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xihao</au><au>Chen, Han</au><au>Selvaraj, Margaret Sunitha</au><au>Van Buren, Eric</au><au>Zhou, Hufeng</au><au>Wang, Yuxuan</au><au>Sun, Ryan</au><au>McCaw, Zachary R</au><au>Yu, Zhi</au><au>Jiang, Min-Zhi</au><au>DiCorpo, Daniel</au><au>Gaynor, Sheila M</au><au>Dey, Rounak</au><au>Arnett, Donna K</au><au>Benjamin, Emelia J</au><au>Bis, Joshua C</au><au>Blangero, John</au><au>Boerwinkle, Eric</au><au>Bowden, Donald W</au><au>Brody, Jennifer A</au><au>Cade, Brian E</au><au>Carson, April P</au><au>Carlson, Jenna C</au><au>Chami, Nathalie</au><au>Chen, Yii-Der Ida</au><au>Curran, Joanne E</au><au>de Vries, Paul S</au><au>Fornage, Myriam</au><au>Franceschini, Nora</au><au>Freedman, Barry I</au><au>Gu, Charles</au><au>Heard-Costa, Nancy L</au><au>He, Jiang</au><au>Hou, Lifang</au><au>Hung, Yi-Jen</au><au>Irvin, Marguerite R</au><au>Kaplan, Robert C</au><au>Kardia, Sharon L R</au><au>Kelly, Tanika N</au><au>Konigsberg, Iain</au><au>Kooperberg, Charles</au><au>Kral, Brian G</au><au>Li, Changwei</au><au>Li, Yun</au><au>Lin, Honghuang</au><au>Liu, Ching-Ti</au><au>Loos, Ruth J F</au><au>Mahaney, Michael C</au><au>Martin, Lisa W</au><au>Mathias, Rasika A</au><au>Mitchell, Braxton D</au><au>Montasser, May E</au><au>Morrison, Alanna C</au><au>Naseri, Take</au><au>North, Kari E</au><au>Palmer, Nicholette D</au><au>Peyser, Patricia A</au><au>Psaty, Bruce M</au><au>Redline, Susan</au><au>Reiner, Alexander P</au><au>Rich, Stephen S</au><au>Sitlani, Colleen M</au><au>Smith, Jennifer A</au><au>Taylor, Kent D</au><au>Tiwari, Hemant K</au><au>Vasan, Ramachandran S</au><au>Viali, Satupa'itea</au><au>Wang, Zhe</au><au>Wessel, Jennifer</au><au>Yanek, Lisa R</au><au>Yu, Bing</au><au>Dupuis, Josée</au><au>Meigs, James B</au><au>Auer, Paul L</au><au>Raffield, Laura M</au><au>Manning, Alisa K</au><au>Rice, Kenneth M</au><au>Rotter, Jerome I</au><au>Peloso, Gina M</au><au>Natarajan, Pradeep</au><au>Li, Zilin</au><au>Liu, Zhonghua</au><au>Lin, Xihong</au><aucorp>NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies</atitle><jtitle>Nature Computational Science</jtitle><addtitle>Nat Comput Sci</addtitle><date>2025-02-07</date><risdate>2025</risdate><issn>2662-8457</issn><eissn>2662-8457</eissn><abstract>Large-scale whole-genome sequencing (WGS) studies have improved our understanding of the contributions of coding and noncoding rare variants to complex human traits. Leveraging association effect sizes across multiple traits in WGS rare variant association analysis can improve statistical power over single-trait analysis, and also detect pleiotropic genes and regions. Existing multi-trait methods have limited ability to perform rare variant analysis of large-scale WGS data. We propose MultiSTAAR, a statistical framework and computationally scalable analytical pipeline for functionally informed multi-trait rare variant analysis in large-scale WGS studies. MultiSTAAR accounts for relatedness, population structure and correlation among phenotypes by jointly analyzing multiple traits, and further empowers rare variant association analysis by incorporating multiple functional annotations. We applied MultiSTAAR to jointly analyze three lipid traits in 61,838 multi-ethnic samples from the Trans-Omics for Precision Medicine (TOPMed) Program. We discovered and replicated new associations with lipid traits missed by single-trait analysis.</abstract><cop>United States</cop><pmid>39920506</pmid><doi>10.1038/s43588-024-00764-8</doi><orcidid>https://orcid.org/0000-0002-8527-8145</orcidid><orcidid>https://orcid.org/0000-0003-4920-4744</orcidid><orcidid>https://orcid.org/0000-0001-9117-0619</orcidid><orcidid>https://orcid.org/0000-0001-6250-5723</orcidid><orcidid>https://orcid.org/0000-0001-5502-063X</orcidid><orcidid>https://orcid.org/0000-0003-2871-3603</orcidid><orcidid>https://orcid.org/0000-0001-7067-7752</orcidid><orcidid>https://orcid.org/0000-0002-4829-8403</orcidid><orcidid>https://orcid.org/0000-0003-3048-9823</orcidid><orcidid>https://orcid.org/0000-0003-3872-7793</orcidid><orcidid>https://orcid.org/0000-0002-8046-4969</orcidid><orcidid>https://orcid.org/0000-0002-3409-1110</orcidid><orcidid>https://orcid.org/0000-0003-4810-3474</orcidid><orcidid>https://orcid.org/0000-0003-0275-5530</orcidid><orcidid>https://orcid.org/0000-0001-9730-0306</orcidid><orcidid>https://orcid.org/0000-0002-8903-0366</orcidid><orcidid>https://orcid.org/0000-0002-9510-4923</orcidid><orcidid>https://orcid.org/0000-0003-4076-2336</orcidid><orcidid>https://orcid.org/0000-0003-1521-8945</orcidid><orcidid>https://orcid.org/0000-0001-8151-0106</orcidid><orcidid>https://orcid.org/0000-0002-8547-6424</orcidid><orcidid>https://orcid.org/0000-0002-0703-0742</orcidid><orcidid>https://orcid.org/0000-0002-7970-6756</orcidid><orcidid>https://orcid.org/0000-0003-4352-0914</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2662-8457
ispartof Nature Computational Science, 2025-02
issn 2662-8457
2662-8457
language eng
recordid cdi_proquest_miscellaneous_3164655597
source Springer Nature - Complete Springer Journals; Nature Journals Online
title A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A04%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20statistical%20framework%20for%20multi-trait%20rare%20variant%20analysis%20in%20large-scale%20whole-genome%20sequencing%20studies&rft.jtitle=Nature%20Computational%20Science&rft.au=Li,%20Xihao&rft.aucorp=NHLBI%20Trans-Omics%20for%20Precision%20Medicine%20(TOPMed)%20Consortium&rft.date=2025-02-07&rft.issn=2662-8457&rft.eissn=2662-8457&rft_id=info:doi/10.1038/s43588-024-00764-8&rft_dat=%3Cproquest_cross%3E3164655597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3164655597&rft_id=info:pmid/39920506&rfr_iscdi=true