Energy-Confinement 3D Flower-Shaped Cages for AI-Driven Decoding of Metabolic Fingerprints in Cardiovascular Disease Diagnosis

Rapid and accurate detection plays a critical role in improving the survival and prognosis of patients with cardiovascular disease, but traditional detection methods are far from ideal for those with suspected conditions. Metabolite analysis based on nanomatrix-assisted laser desorption/ionization m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2025-02
Hauptverfasser: Li, Zhiyu, Zhang, Shuyu, Xiao, Qianfeng, Shui, Shaoxuan, Dong, Pingli, Jiang, Yujia, Chen, Yuanyuan, Lan, Fang, Peng, Yong, Ying, Binwu, Wu, Yao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title ACS nano
container_volume
creator Li, Zhiyu
Zhang, Shuyu
Xiao, Qianfeng
Shui, Shaoxuan
Dong, Pingli
Jiang, Yujia
Chen, Yuanyuan
Lan, Fang
Peng, Yong
Ying, Binwu
Wu, Yao
description Rapid and accurate detection plays a critical role in improving the survival and prognosis of patients with cardiovascular disease, but traditional detection methods are far from ideal for those with suspected conditions. Metabolite analysis based on nanomatrix-assisted laser desorption/ionization mass spectrometry (NMALDI-MS) is considered to be a promising technique for disease diagnosis. However, the performance of core nanomatrixes has limited its clinical application. In this study, we constructed 3D flower-shaped cages based on controllable structured metal-organic frameworks and iron oxide nanoparticles with low thermal conductivity and significant photothermal effects. The elongation of the incident light path through multilayer reflection significantly enhances the effective light absorption area of the nanomatrixes. Concurrently, the alternating layered structure confines the thermal energy, reducing thermal losses. Moreover, the 3D structure increases affinity sites, expanding the detection coverage. This approach effectively enhances the laser ionization and thermal desorption efficiency during the LDI process. We applied this technology to analyze the serum metabolomes of patients with myocardial infarction, heart failure, and heart failure combined with myocardial infarction, achieving cost-effective, high-throughput, highly accurate, and user-friendly detection of cardiovascular diseases. Subsequently, deep analysis of detected serum fingerprints via artificial intelligence models screens potential metabolic biomarkers, providing a new paradigm for the accurate diagnosis of cardiovascular diseases.
doi_str_mv 10.1021/acsnano.4c14656
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3164654531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3164654531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c963-e4db00c4ee3265ba097affd1cb1a0eadacb231d454a441ff99dd6b48fbb576e63</originalsourceid><addsrcrecordid>eNo9kL1PwzAUxC0EolCY2ZBHloBdO24zVv0ApCIGGNiiZ_s5GKV2sVtQF_52gghMd3q6O-n9CLng7JqzEb8BkwOEeC0Nl6pUB-SEV0IVbKJeDv99yQfkNOc3xsrxZKyOyUBUFZ9UUpyQr0XA1OyLWQzOB1xj2FIxp8s2fmIqnl5hg5bOoMFMXUx0el_Mk__AQOdoovWhodHRB9yCjq03dNldMG2SD9tMfeiayfr4AdnsWkh07jNCxk6hCTH7fEaOHLQZz3sdkufl4nl2V6web-9n01VhKiUKlFYzZiSiGKlSA6vG4JzlRnNgCBaMHgluZSlBSu5cVVmrtJw4rcuxQiWG5Op3dpPi-w7ztl77bLBtIWDc5Vpw1eGTpeBd9OY3alLMOaGru2_WkPY1Z_UP87pnXvfMu8ZlP77Ta7T_-T_I4htM_IEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3164654531</pqid></control><display><type>article</type><title>Energy-Confinement 3D Flower-Shaped Cages for AI-Driven Decoding of Metabolic Fingerprints in Cardiovascular Disease Diagnosis</title><source>ACS Publications</source><creator>Li, Zhiyu ; Zhang, Shuyu ; Xiao, Qianfeng ; Shui, Shaoxuan ; Dong, Pingli ; Jiang, Yujia ; Chen, Yuanyuan ; Lan, Fang ; Peng, Yong ; Ying, Binwu ; Wu, Yao</creator><creatorcontrib>Li, Zhiyu ; Zhang, Shuyu ; Xiao, Qianfeng ; Shui, Shaoxuan ; Dong, Pingli ; Jiang, Yujia ; Chen, Yuanyuan ; Lan, Fang ; Peng, Yong ; Ying, Binwu ; Wu, Yao</creatorcontrib><description>Rapid and accurate detection plays a critical role in improving the survival and prognosis of patients with cardiovascular disease, but traditional detection methods are far from ideal for those with suspected conditions. Metabolite analysis based on nanomatrix-assisted laser desorption/ionization mass spectrometry (NMALDI-MS) is considered to be a promising technique for disease diagnosis. However, the performance of core nanomatrixes has limited its clinical application. In this study, we constructed 3D flower-shaped cages based on controllable structured metal-organic frameworks and iron oxide nanoparticles with low thermal conductivity and significant photothermal effects. The elongation of the incident light path through multilayer reflection significantly enhances the effective light absorption area of the nanomatrixes. Concurrently, the alternating layered structure confines the thermal energy, reducing thermal losses. Moreover, the 3D structure increases affinity sites, expanding the detection coverage. This approach effectively enhances the laser ionization and thermal desorption efficiency during the LDI process. We applied this technology to analyze the serum metabolomes of patients with myocardial infarction, heart failure, and heart failure combined with myocardial infarction, achieving cost-effective, high-throughput, highly accurate, and user-friendly detection of cardiovascular diseases. Subsequently, deep analysis of detected serum fingerprints via artificial intelligence models screens potential metabolic biomarkers, providing a new paradigm for the accurate diagnosis of cardiovascular diseases.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c14656</identifier><identifier>PMID: 39918943</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS nano, 2025-02</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c963-e4db00c4ee3265ba097affd1cb1a0eadacb231d454a441ff99dd6b48fbb576e63</cites><orcidid>0000-0002-0524-4042 ; 0000-0001-8077-3908 ; 0000-0002-2920-9858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39918943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhiyu</creatorcontrib><creatorcontrib>Zhang, Shuyu</creatorcontrib><creatorcontrib>Xiao, Qianfeng</creatorcontrib><creatorcontrib>Shui, Shaoxuan</creatorcontrib><creatorcontrib>Dong, Pingli</creatorcontrib><creatorcontrib>Jiang, Yujia</creatorcontrib><creatorcontrib>Chen, Yuanyuan</creatorcontrib><creatorcontrib>Lan, Fang</creatorcontrib><creatorcontrib>Peng, Yong</creatorcontrib><creatorcontrib>Ying, Binwu</creatorcontrib><creatorcontrib>Wu, Yao</creatorcontrib><title>Energy-Confinement 3D Flower-Shaped Cages for AI-Driven Decoding of Metabolic Fingerprints in Cardiovascular Disease Diagnosis</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Rapid and accurate detection plays a critical role in improving the survival and prognosis of patients with cardiovascular disease, but traditional detection methods are far from ideal for those with suspected conditions. Metabolite analysis based on nanomatrix-assisted laser desorption/ionization mass spectrometry (NMALDI-MS) is considered to be a promising technique for disease diagnosis. However, the performance of core nanomatrixes has limited its clinical application. In this study, we constructed 3D flower-shaped cages based on controllable structured metal-organic frameworks and iron oxide nanoparticles with low thermal conductivity and significant photothermal effects. The elongation of the incident light path through multilayer reflection significantly enhances the effective light absorption area of the nanomatrixes. Concurrently, the alternating layered structure confines the thermal energy, reducing thermal losses. Moreover, the 3D structure increases affinity sites, expanding the detection coverage. This approach effectively enhances the laser ionization and thermal desorption efficiency during the LDI process. We applied this technology to analyze the serum metabolomes of patients with myocardial infarction, heart failure, and heart failure combined with myocardial infarction, achieving cost-effective, high-throughput, highly accurate, and user-friendly detection of cardiovascular diseases. Subsequently, deep analysis of detected serum fingerprints via artificial intelligence models screens potential metabolic biomarkers, providing a new paradigm for the accurate diagnosis of cardiovascular diseases.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAUxC0EolCY2ZBHloBdO24zVv0ApCIGGNiiZ_s5GKV2sVtQF_52gghMd3q6O-n9CLng7JqzEb8BkwOEeC0Nl6pUB-SEV0IVbKJeDv99yQfkNOc3xsrxZKyOyUBUFZ9UUpyQr0XA1OyLWQzOB1xj2FIxp8s2fmIqnl5hg5bOoMFMXUx0el_Mk__AQOdoovWhodHRB9yCjq03dNldMG2SD9tMfeiayfr4AdnsWkh07jNCxk6hCTH7fEaOHLQZz3sdkufl4nl2V6web-9n01VhKiUKlFYzZiSiGKlSA6vG4JzlRnNgCBaMHgluZSlBSu5cVVmrtJw4rcuxQiWG5Op3dpPi-w7ztl77bLBtIWDc5Vpw1eGTpeBd9OY3alLMOaGru2_WkPY1Z_UP87pnXvfMu8ZlP77Ta7T_-T_I4htM_IEw</recordid><startdate>20250207</startdate><enddate>20250207</enddate><creator>Li, Zhiyu</creator><creator>Zhang, Shuyu</creator><creator>Xiao, Qianfeng</creator><creator>Shui, Shaoxuan</creator><creator>Dong, Pingli</creator><creator>Jiang, Yujia</creator><creator>Chen, Yuanyuan</creator><creator>Lan, Fang</creator><creator>Peng, Yong</creator><creator>Ying, Binwu</creator><creator>Wu, Yao</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0524-4042</orcidid><orcidid>https://orcid.org/0000-0001-8077-3908</orcidid><orcidid>https://orcid.org/0000-0002-2920-9858</orcidid></search><sort><creationdate>20250207</creationdate><title>Energy-Confinement 3D Flower-Shaped Cages for AI-Driven Decoding of Metabolic Fingerprints in Cardiovascular Disease Diagnosis</title><author>Li, Zhiyu ; Zhang, Shuyu ; Xiao, Qianfeng ; Shui, Shaoxuan ; Dong, Pingli ; Jiang, Yujia ; Chen, Yuanyuan ; Lan, Fang ; Peng, Yong ; Ying, Binwu ; Wu, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c963-e4db00c4ee3265ba097affd1cb1a0eadacb231d454a441ff99dd6b48fbb576e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhiyu</creatorcontrib><creatorcontrib>Zhang, Shuyu</creatorcontrib><creatorcontrib>Xiao, Qianfeng</creatorcontrib><creatorcontrib>Shui, Shaoxuan</creatorcontrib><creatorcontrib>Dong, Pingli</creatorcontrib><creatorcontrib>Jiang, Yujia</creatorcontrib><creatorcontrib>Chen, Yuanyuan</creatorcontrib><creatorcontrib>Lan, Fang</creatorcontrib><creatorcontrib>Peng, Yong</creatorcontrib><creatorcontrib>Ying, Binwu</creatorcontrib><creatorcontrib>Wu, Yao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhiyu</au><au>Zhang, Shuyu</au><au>Xiao, Qianfeng</au><au>Shui, Shaoxuan</au><au>Dong, Pingli</au><au>Jiang, Yujia</au><au>Chen, Yuanyuan</au><au>Lan, Fang</au><au>Peng, Yong</au><au>Ying, Binwu</au><au>Wu, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Confinement 3D Flower-Shaped Cages for AI-Driven Decoding of Metabolic Fingerprints in Cardiovascular Disease Diagnosis</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2025-02-07</date><risdate>2025</risdate><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Rapid and accurate detection plays a critical role in improving the survival and prognosis of patients with cardiovascular disease, but traditional detection methods are far from ideal for those with suspected conditions. Metabolite analysis based on nanomatrix-assisted laser desorption/ionization mass spectrometry (NMALDI-MS) is considered to be a promising technique for disease diagnosis. However, the performance of core nanomatrixes has limited its clinical application. In this study, we constructed 3D flower-shaped cages based on controllable structured metal-organic frameworks and iron oxide nanoparticles with low thermal conductivity and significant photothermal effects. The elongation of the incident light path through multilayer reflection significantly enhances the effective light absorption area of the nanomatrixes. Concurrently, the alternating layered structure confines the thermal energy, reducing thermal losses. Moreover, the 3D structure increases affinity sites, expanding the detection coverage. This approach effectively enhances the laser ionization and thermal desorption efficiency during the LDI process. We applied this technology to analyze the serum metabolomes of patients with myocardial infarction, heart failure, and heart failure combined with myocardial infarction, achieving cost-effective, high-throughput, highly accurate, and user-friendly detection of cardiovascular diseases. Subsequently, deep analysis of detected serum fingerprints via artificial intelligence models screens potential metabolic biomarkers, providing a new paradigm for the accurate diagnosis of cardiovascular diseases.</abstract><cop>United States</cop><pmid>39918943</pmid><doi>10.1021/acsnano.4c14656</doi><orcidid>https://orcid.org/0000-0002-0524-4042</orcidid><orcidid>https://orcid.org/0000-0001-8077-3908</orcidid><orcidid>https://orcid.org/0000-0002-2920-9858</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2025-02
issn 1936-0851
1936-086X
1936-086X
language eng
recordid cdi_proquest_miscellaneous_3164654531
source ACS Publications
title Energy-Confinement 3D Flower-Shaped Cages for AI-Driven Decoding of Metabolic Fingerprints in Cardiovascular Disease Diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T14%3A29%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Confinement%203D%20Flower-Shaped%20Cages%20for%20AI-Driven%20Decoding%20of%20Metabolic%20Fingerprints%20in%20Cardiovascular%20Disease%20Diagnosis&rft.jtitle=ACS%20nano&rft.au=Li,%20Zhiyu&rft.date=2025-02-07&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c14656&rft_dat=%3Cproquest_cross%3E3164654531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3164654531&rft_id=info:pmid/39918943&rfr_iscdi=true