Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction

Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning. This study focuses on accelerat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magma (New York, N.Y.) N.Y.), 2025-02
Hauptverfasser: Schauman, S Sophie, Iyer, Siddharth S, Sandino, Christopher M, Yurt, Mahmut, Cao, Xiaozhi, Liao, Congyu, Ruengchaijatuporn, Natthanan, Chatnuntawech, Itthi, Tong, Elizabeth, Setsompop, Kawin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Magma (New York, N.Y.)
container_volume
creator Schauman, S Sophie
Iyer, Siddharth S
Sandino, Christopher M
Yurt, Mahmut
Cao, Xiaozhi
Liao, Congyu
Ruengchaijatuporn, Natthanan
Chatnuntawech, Itthi
Tong, Elizabeth
Setsompop, Kawin
description Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning. This study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence. The full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS's efficiency in expediting iterative reconstruction while maintaining high-quality results. By offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner.
doi_str_mv 10.1007/s10334-024-01222-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3162574822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3162574822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-2e6c81cd0d8ae3e619cf7662c154c8947ac7d17b1478abdff275c04db194d49d3</originalsourceid><addsrcrecordid>eNpNkDtPwzAQxy0EoqXwBRhQRhgCfiV2RtTykioxALPl2Bdk5MTBTpDg05PSghhOd7r_Y_ghdErwJcFYXCWCGeM5ptMQSmlO99CcsILmsizJ_r97ho5SesOYkgKzQzRjlayIqOQc-RVAn3nQsXPda-Y6Nzjt3RfYzIS2j5DSdCbo0kY-X4F3-fLpYjJmH8GPLQzRmSz1enAhH6DtQ9Q-S2M9vQxkEUzo0hBHM-ndMTpotE9wstsL9HJ787y8z9ePdw_L63VuKJVDTqE0khiLrdTAoCSVaURZUkMKbmTFhTbCElETLqSubdNQURjMbU0qbnll2QKdb3v7GN5HSINqXTLgve4gjEkxUtJCcEnpZKVbq4khpQiN6qNrdfxUBKsNZbWlrCbK6oey2oTOdv1j3YL9i_xiZd-qbnoa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3162574822</pqid></control><display><type>article</type><title>Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction</title><source>Springer Nature - Complete Springer Journals</source><creator>Schauman, S Sophie ; Iyer, Siddharth S ; Sandino, Christopher M ; Yurt, Mahmut ; Cao, Xiaozhi ; Liao, Congyu ; Ruengchaijatuporn, Natthanan ; Chatnuntawech, Itthi ; Tong, Elizabeth ; Setsompop, Kawin</creator><creatorcontrib>Schauman, S Sophie ; Iyer, Siddharth S ; Sandino, Christopher M ; Yurt, Mahmut ; Cao, Xiaozhi ; Liao, Congyu ; Ruengchaijatuporn, Natthanan ; Chatnuntawech, Itthi ; Tong, Elizabeth ; Setsompop, Kawin</creatorcontrib><description>Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning. This study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence. The full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS's efficiency in expediting iterative reconstruction while maintaining high-quality results. By offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner.</description><identifier>ISSN: 1352-8661</identifier><identifier>EISSN: 1352-8661</identifier><identifier>DOI: 10.1007/s10334-024-01222-2</identifier><identifier>PMID: 39891798</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Magma (New York, N.Y.), 2025-02</ispartof><rights>2025. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-2e6c81cd0d8ae3e619cf7662c154c8947ac7d17b1478abdff275c04db194d49d3</cites><orcidid>0000-0002-3744-2553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39891798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schauman, S Sophie</creatorcontrib><creatorcontrib>Iyer, Siddharth S</creatorcontrib><creatorcontrib>Sandino, Christopher M</creatorcontrib><creatorcontrib>Yurt, Mahmut</creatorcontrib><creatorcontrib>Cao, Xiaozhi</creatorcontrib><creatorcontrib>Liao, Congyu</creatorcontrib><creatorcontrib>Ruengchaijatuporn, Natthanan</creatorcontrib><creatorcontrib>Chatnuntawech, Itthi</creatorcontrib><creatorcontrib>Tong, Elizabeth</creatorcontrib><creatorcontrib>Setsompop, Kawin</creatorcontrib><title>Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction</title><title>Magma (New York, N.Y.)</title><addtitle>MAGMA</addtitle><description>Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning. This study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence. The full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS's efficiency in expediting iterative reconstruction while maintaining high-quality results. By offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner.</description><issn>1352-8661</issn><issn>1352-8661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAQxy0EoqXwBRhQRhgCfiV2RtTykioxALPl2Bdk5MTBTpDg05PSghhOd7r_Y_ghdErwJcFYXCWCGeM5ptMQSmlO99CcsILmsizJ_r97ho5SesOYkgKzQzRjlayIqOQc-RVAn3nQsXPda-Y6Nzjt3RfYzIS2j5DSdCbo0kY-X4F3-fLpYjJmH8GPLQzRmSz1enAhH6DtQ9Q-S2M9vQxkEUzo0hBHM-ndMTpotE9wstsL9HJ787y8z9ePdw_L63VuKJVDTqE0khiLrdTAoCSVaURZUkMKbmTFhTbCElETLqSubdNQURjMbU0qbnll2QKdb3v7GN5HSINqXTLgve4gjEkxUtJCcEnpZKVbq4khpQiN6qNrdfxUBKsNZbWlrCbK6oey2oTOdv1j3YL9i_xiZd-qbnoa</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Schauman, S Sophie</creator><creator>Iyer, Siddharth S</creator><creator>Sandino, Christopher M</creator><creator>Yurt, Mahmut</creator><creator>Cao, Xiaozhi</creator><creator>Liao, Congyu</creator><creator>Ruengchaijatuporn, Natthanan</creator><creator>Chatnuntawech, Itthi</creator><creator>Tong, Elizabeth</creator><creator>Setsompop, Kawin</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3744-2553</orcidid></search><sort><creationdate>20250201</creationdate><title>Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction</title><author>Schauman, S Sophie ; Iyer, Siddharth S ; Sandino, Christopher M ; Yurt, Mahmut ; Cao, Xiaozhi ; Liao, Congyu ; Ruengchaijatuporn, Natthanan ; Chatnuntawech, Itthi ; Tong, Elizabeth ; Setsompop, Kawin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-2e6c81cd0d8ae3e619cf7662c154c8947ac7d17b1478abdff275c04db194d49d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schauman, S Sophie</creatorcontrib><creatorcontrib>Iyer, Siddharth S</creatorcontrib><creatorcontrib>Sandino, Christopher M</creatorcontrib><creatorcontrib>Yurt, Mahmut</creatorcontrib><creatorcontrib>Cao, Xiaozhi</creatorcontrib><creatorcontrib>Liao, Congyu</creatorcontrib><creatorcontrib>Ruengchaijatuporn, Natthanan</creatorcontrib><creatorcontrib>Chatnuntawech, Itthi</creatorcontrib><creatorcontrib>Tong, Elizabeth</creatorcontrib><creatorcontrib>Setsompop, Kawin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magma (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schauman, S Sophie</au><au>Iyer, Siddharth S</au><au>Sandino, Christopher M</au><au>Yurt, Mahmut</au><au>Cao, Xiaozhi</au><au>Liao, Congyu</au><au>Ruengchaijatuporn, Natthanan</au><au>Chatnuntawech, Itthi</au><au>Tong, Elizabeth</au><au>Setsompop, Kawin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction</atitle><jtitle>Magma (New York, N.Y.)</jtitle><addtitle>MAGMA</addtitle><date>2025-02-01</date><risdate>2025</risdate><issn>1352-8661</issn><eissn>1352-8661</eissn><abstract>Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning. This study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence. The full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS's efficiency in expediting iterative reconstruction while maintaining high-quality results. By offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner.</abstract><cop>Germany</cop><pmid>39891798</pmid><doi>10.1007/s10334-024-01222-2</doi><orcidid>https://orcid.org/0000-0002-3744-2553</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1352-8661
ispartof Magma (New York, N.Y.), 2025-02
issn 1352-8661
1352-8661
language eng
recordid cdi_proquest_miscellaneous_3162574822
source Springer Nature - Complete Springer Journals
title Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20initialized%20compressed%20sensing%20(Deli-CS)%20in%20volumetric%20spatio-temporal%20subspace%20reconstruction&rft.jtitle=Magma%20(New%20York,%20N.Y.)&rft.au=Schauman,%20S%20Sophie&rft.date=2025-02-01&rft.issn=1352-8661&rft.eissn=1352-8661&rft_id=info:doi/10.1007/s10334-024-01222-2&rft_dat=%3Cproquest_cross%3E3162574822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3162574822&rft_id=info:pmid/39891798&rfr_iscdi=true