Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction
Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning. This study focuses on accelerat...
Gespeichert in:
Veröffentlicht in: | Magma (New York, N.Y.) N.Y.), 2025-02 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Magma (New York, N.Y.) |
container_volume | |
creator | Schauman, S Sophie Iyer, Siddharth S Sandino, Christopher M Yurt, Mahmut Cao, Xiaozhi Liao, Congyu Ruengchaijatuporn, Natthanan Chatnuntawech, Itthi Tong, Elizabeth Setsompop, Kawin |
description | Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning.
This study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence.
The full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS's efficiency in expediting iterative reconstruction while maintaining high-quality results.
By offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner. |
doi_str_mv | 10.1007/s10334-024-01222-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3162574822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3162574822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-2e6c81cd0d8ae3e619cf7662c154c8947ac7d17b1478abdff275c04db194d49d3</originalsourceid><addsrcrecordid>eNpNkDtPwzAQxy0EoqXwBRhQRhgCfiV2RtTykioxALPl2Bdk5MTBTpDg05PSghhOd7r_Y_ghdErwJcFYXCWCGeM5ptMQSmlO99CcsILmsizJ_r97ho5SesOYkgKzQzRjlayIqOQc-RVAn3nQsXPda-Y6Nzjt3RfYzIS2j5DSdCbo0kY-X4F3-fLpYjJmH8GPLQzRmSz1enAhH6DtQ9Q-S2M9vQxkEUzo0hBHM-ndMTpotE9wstsL9HJ787y8z9ePdw_L63VuKJVDTqE0khiLrdTAoCSVaURZUkMKbmTFhTbCElETLqSubdNQURjMbU0qbnll2QKdb3v7GN5HSINqXTLgve4gjEkxUtJCcEnpZKVbq4khpQiN6qNrdfxUBKsNZbWlrCbK6oey2oTOdv1j3YL9i_xiZd-qbnoa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3162574822</pqid></control><display><type>article</type><title>Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction</title><source>Springer Nature - Complete Springer Journals</source><creator>Schauman, S Sophie ; Iyer, Siddharth S ; Sandino, Christopher M ; Yurt, Mahmut ; Cao, Xiaozhi ; Liao, Congyu ; Ruengchaijatuporn, Natthanan ; Chatnuntawech, Itthi ; Tong, Elizabeth ; Setsompop, Kawin</creator><creatorcontrib>Schauman, S Sophie ; Iyer, Siddharth S ; Sandino, Christopher M ; Yurt, Mahmut ; Cao, Xiaozhi ; Liao, Congyu ; Ruengchaijatuporn, Natthanan ; Chatnuntawech, Itthi ; Tong, Elizabeth ; Setsompop, Kawin</creatorcontrib><description>Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning.
This study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence.
The full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS's efficiency in expediting iterative reconstruction while maintaining high-quality results.
By offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner.</description><identifier>ISSN: 1352-8661</identifier><identifier>EISSN: 1352-8661</identifier><identifier>DOI: 10.1007/s10334-024-01222-2</identifier><identifier>PMID: 39891798</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Magma (New York, N.Y.), 2025-02</ispartof><rights>2025. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-2e6c81cd0d8ae3e619cf7662c154c8947ac7d17b1478abdff275c04db194d49d3</cites><orcidid>0000-0002-3744-2553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39891798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schauman, S Sophie</creatorcontrib><creatorcontrib>Iyer, Siddharth S</creatorcontrib><creatorcontrib>Sandino, Christopher M</creatorcontrib><creatorcontrib>Yurt, Mahmut</creatorcontrib><creatorcontrib>Cao, Xiaozhi</creatorcontrib><creatorcontrib>Liao, Congyu</creatorcontrib><creatorcontrib>Ruengchaijatuporn, Natthanan</creatorcontrib><creatorcontrib>Chatnuntawech, Itthi</creatorcontrib><creatorcontrib>Tong, Elizabeth</creatorcontrib><creatorcontrib>Setsompop, Kawin</creatorcontrib><title>Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction</title><title>Magma (New York, N.Y.)</title><addtitle>MAGMA</addtitle><description>Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning.
This study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence.
The full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS's efficiency in expediting iterative reconstruction while maintaining high-quality results.
By offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner.</description><issn>1352-8661</issn><issn>1352-8661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAQxy0EoqXwBRhQRhgCfiV2RtTykioxALPl2Bdk5MTBTpDg05PSghhOd7r_Y_ghdErwJcFYXCWCGeM5ptMQSmlO99CcsILmsizJ_r97ho5SesOYkgKzQzRjlayIqOQc-RVAn3nQsXPda-Y6Nzjt3RfYzIS2j5DSdCbo0kY-X4F3-fLpYjJmH8GPLQzRmSz1enAhH6DtQ9Q-S2M9vQxkEUzo0hBHM-ndMTpotE9wstsL9HJ787y8z9ePdw_L63VuKJVDTqE0khiLrdTAoCSVaURZUkMKbmTFhTbCElETLqSubdNQURjMbU0qbnll2QKdb3v7GN5HSINqXTLgve4gjEkxUtJCcEnpZKVbq4khpQiN6qNrdfxUBKsNZbWlrCbK6oey2oTOdv1j3YL9i_xiZd-qbnoa</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Schauman, S Sophie</creator><creator>Iyer, Siddharth S</creator><creator>Sandino, Christopher M</creator><creator>Yurt, Mahmut</creator><creator>Cao, Xiaozhi</creator><creator>Liao, Congyu</creator><creator>Ruengchaijatuporn, Natthanan</creator><creator>Chatnuntawech, Itthi</creator><creator>Tong, Elizabeth</creator><creator>Setsompop, Kawin</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3744-2553</orcidid></search><sort><creationdate>20250201</creationdate><title>Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction</title><author>Schauman, S Sophie ; Iyer, Siddharth S ; Sandino, Christopher M ; Yurt, Mahmut ; Cao, Xiaozhi ; Liao, Congyu ; Ruengchaijatuporn, Natthanan ; Chatnuntawech, Itthi ; Tong, Elizabeth ; Setsompop, Kawin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-2e6c81cd0d8ae3e619cf7662c154c8947ac7d17b1478abdff275c04db194d49d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schauman, S Sophie</creatorcontrib><creatorcontrib>Iyer, Siddharth S</creatorcontrib><creatorcontrib>Sandino, Christopher M</creatorcontrib><creatorcontrib>Yurt, Mahmut</creatorcontrib><creatorcontrib>Cao, Xiaozhi</creatorcontrib><creatorcontrib>Liao, Congyu</creatorcontrib><creatorcontrib>Ruengchaijatuporn, Natthanan</creatorcontrib><creatorcontrib>Chatnuntawech, Itthi</creatorcontrib><creatorcontrib>Tong, Elizabeth</creatorcontrib><creatorcontrib>Setsompop, Kawin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magma (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schauman, S Sophie</au><au>Iyer, Siddharth S</au><au>Sandino, Christopher M</au><au>Yurt, Mahmut</au><au>Cao, Xiaozhi</au><au>Liao, Congyu</au><au>Ruengchaijatuporn, Natthanan</au><au>Chatnuntawech, Itthi</au><au>Tong, Elizabeth</au><au>Setsompop, Kawin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction</atitle><jtitle>Magma (New York, N.Y.)</jtitle><addtitle>MAGMA</addtitle><date>2025-02-01</date><risdate>2025</risdate><issn>1352-8661</issn><eissn>1352-8661</eissn><abstract>Spatio-temporal MRI methods offer rapid whole-brain multi-parametric mapping, yet they are often hindered by prolonged reconstruction times or prohibitively burdensome hardware requirements. The aim of this project is to reduce reconstruction time using deep learning.
This study focuses on accelerating the reconstruction of volumetric multi-axis spiral projection MRF, aiming for whole-brain T1 and T2 mapping, while ensuring a streamlined approach compatible with clinical requirements. To optimize reconstruction time, the traditional method is first revamped with a memory-efficient GPU implementation. Deep Learning Initialized Compressed Sensing (Deli-CS) is then introduced, which initiates iterative reconstruction with a DL-generated seed point, reducing the number of iterations needed for convergence.
The full reconstruction process for volumetric multi-axis spiral projection MRF is completed in just 20 min compared to over 2 h for the previously published implementation. Comparative analysis demonstrates Deli-CS's efficiency in expediting iterative reconstruction while maintaining high-quality results.
By offering a rapid warm start to the iterative reconstruction algorithm, this method substantially reduces processing time while preserving reconstruction quality. Its successful implementation paves the way for advanced spatio-temporal MRI techniques, addressing the challenge of extensive reconstruction times and ensuring efficient, high-quality imaging in a streamlined manner.</abstract><cop>Germany</cop><pmid>39891798</pmid><doi>10.1007/s10334-024-01222-2</doi><orcidid>https://orcid.org/0000-0002-3744-2553</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1352-8661 |
ispartof | Magma (New York, N.Y.), 2025-02 |
issn | 1352-8661 1352-8661 |
language | eng |
recordid | cdi_proquest_miscellaneous_3162574822 |
source | Springer Nature - Complete Springer Journals |
title | Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20initialized%20compressed%20sensing%20(Deli-CS)%20in%20volumetric%20spatio-temporal%20subspace%20reconstruction&rft.jtitle=Magma%20(New%20York,%20N.Y.)&rft.au=Schauman,%20S%20Sophie&rft.date=2025-02-01&rft.issn=1352-8661&rft.eissn=1352-8661&rft_id=info:doi/10.1007/s10334-024-01222-2&rft_dat=%3Cproquest_cross%3E3162574822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3162574822&rft_id=info:pmid/39891798&rfr_iscdi=true |