Detecting IDH and TERTp Mutations in Diffuse Gliomas Using 1H-MRS with Attention Deep-Shallow Networks
Preoperative and noninvasive detection of isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase gene promoter (TERTp) mutations in glioma is critical for prognosis and treatment planning. This study aims to develop deep learning classifiers to identify IDH and TERTp mutations using pro...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2025-03, Vol.186, p.109736, Article 109736 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109736 |
container_title | Computers in biology and medicine |
container_volume | 186 |
creator | Sacli-Bilmez, Banu Bas, Abdullah Danyeli, Ayça Erşen Yakıcıer, M.Cengiz Pamir, M.Necmettin Özduman, Koray Dinçer, Alp Ozturk-Isik, Esin |
description | Preoperative and noninvasive detection of isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase gene promoter (TERTp) mutations in glioma is critical for prognosis and treatment planning. This study aims to develop deep learning classifiers to identify IDH and TERTp mutations using proton magnetic resonance spectroscopy (1H-MRS) and a one-dimensional convolutional neural network (1D-CNN) architecture.
This study included 1H-MRS data from 225 adult patients with hemispheric diffuse glioma (117 IDH mutants and 108 IDH wild-type; 99 TERTp mutants and 100 TERTp wild-type). The spectra were processed using the LCModel, and multiple deep learning models, including a baseline, a deep-shallow network, and an attention deep-shallow network (ADSN), were trained to classify mutational subgroups of gliomas. The Gradient-weighted Class Activation Mapping (Grad-CAM) technique was used to interpret the models’ decision-making process.
The ADSN model was the most effective for IDH mutation detection, achieving F1-scores of 93% on the validation set and 88% on the test set. For TERTp mutation detection, the ADSN model achieved F1-scores of 80% in the validation set and 81% in the test set, whereas TERTp-only gliomas were detected with F1-scores of 88% in the validation set and 86% in the test set using the same architecture.
Deep learning models accurately predicted the IDH and TERTp mutational subgroups of hemispheric diffuse gliomas by extracting relevant information from 1H-MRS spectra without the need for manual feature extraction.
•ADSN demonstrated strong performance in identifying IDH-mut and TERTp-mut gliomas.•DSN showed strong performance in identifying TERTp-only status, with 87% F1-score.•Grad-CAM highlighted 2HG, Lac, and tCho for IDH-mut, and Glx for IDH-wt gliomas. |
doi_str_mv | 10.1016/j.compbiomed.2025.109736 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3160937237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482525000861</els_id><sourcerecordid>3160937237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1417-5a9d6f8c6bc618ca16b9a5bcb22f237eeeb1b74969e3d27acd0654eb5874c5903</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwD16ySbHzcOJlaUpbqQWpj7XlOBPqksQhdqj4e1IFiSWrkUb33NEchDAlE0ooezpNlKmaTJsK8olP_Khf8zhgV2hEk5h7JArCazQihBIvTPzoFt1ZeyKEhCQgI1Sk4EA5Xb_jVbrEss7xfr7dN3jTOem0qS3WNU51UXQW8KLs70iLD_YC0KW32e7wWbsjnjoH9SWPU4DG2x1lWZozfgV3Nu2HvUc3hSwtPPzOMTq8zPezpbd-W6xm07WnaEhjL5I8Z0WiWKYYTZSkLOMyylTm-4UfxACQ0SwOOeMQ5H4sVU5YFEIWJXGoIk6CMXocepvWfHZgnai0VVCWsgbTWRFQRngQ9119NBmiqjXWtlCIptWVbL8FJeKiVpzEn1pxUSsGtT36PKDQv_KloRVWaagV5LrtZYrc6P9LfgAjXoba</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3160937237</pqid></control><display><type>article</type><title>Detecting IDH and TERTp Mutations in Diffuse Gliomas Using 1H-MRS with Attention Deep-Shallow Networks</title><source>Elsevier ScienceDirect Journals</source><creator>Sacli-Bilmez, Banu ; Bas, Abdullah ; Danyeli, Ayça Erşen ; Yakıcıer, M.Cengiz ; Pamir, M.Necmettin ; Özduman, Koray ; Dinçer, Alp ; Ozturk-Isik, Esin</creator><creatorcontrib>Sacli-Bilmez, Banu ; Bas, Abdullah ; Danyeli, Ayça Erşen ; Yakıcıer, M.Cengiz ; Pamir, M.Necmettin ; Özduman, Koray ; Dinçer, Alp ; Ozturk-Isik, Esin</creatorcontrib><description>Preoperative and noninvasive detection of isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase gene promoter (TERTp) mutations in glioma is critical for prognosis and treatment planning. This study aims to develop deep learning classifiers to identify IDH and TERTp mutations using proton magnetic resonance spectroscopy (1H-MRS) and a one-dimensional convolutional neural network (1D-CNN) architecture.
This study included 1H-MRS data from 225 adult patients with hemispheric diffuse glioma (117 IDH mutants and 108 IDH wild-type; 99 TERTp mutants and 100 TERTp wild-type). The spectra were processed using the LCModel, and multiple deep learning models, including a baseline, a deep-shallow network, and an attention deep-shallow network (ADSN), were trained to classify mutational subgroups of gliomas. The Gradient-weighted Class Activation Mapping (Grad-CAM) technique was used to interpret the models’ decision-making process.
The ADSN model was the most effective for IDH mutation detection, achieving F1-scores of 93% on the validation set and 88% on the test set. For TERTp mutation detection, the ADSN model achieved F1-scores of 80% in the validation set and 81% in the test set, whereas TERTp-only gliomas were detected with F1-scores of 88% in the validation set and 86% in the test set using the same architecture.
Deep learning models accurately predicted the IDH and TERTp mutational subgroups of hemispheric diffuse gliomas by extracting relevant information from 1H-MRS spectra without the need for manual feature extraction.
•ADSN demonstrated strong performance in identifying IDH-mut and TERTp-mut gliomas.•DSN showed strong performance in identifying TERTp-only status, with 87% F1-score.•Grad-CAM highlighted 2HG, Lac, and tCho for IDH-mut, and Glx for IDH-wt gliomas.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2025.109736</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>1D-CNN ; deep learning ; glioma ; Grad-CAM ; IDH mutation ; proton MRS ; TERTp mutation</subject><ispartof>Computers in biology and medicine, 2025-03, Vol.186, p.109736, Article 109736</ispartof><rights>2025</rights><rights>Copyright © 2025 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1417-5a9d6f8c6bc618ca16b9a5bcb22f237eeeb1b74969e3d27acd0654eb5874c5903</cites><orcidid>0000-0002-7606-8314 ; 0000-0002-5958-8625 ; 0000-0002-8997-878X ; 0000-0002-3543-0401 ; 0000-0001-6263-3928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482525000861$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Sacli-Bilmez, Banu</creatorcontrib><creatorcontrib>Bas, Abdullah</creatorcontrib><creatorcontrib>Danyeli, Ayça Erşen</creatorcontrib><creatorcontrib>Yakıcıer, M.Cengiz</creatorcontrib><creatorcontrib>Pamir, M.Necmettin</creatorcontrib><creatorcontrib>Özduman, Koray</creatorcontrib><creatorcontrib>Dinçer, Alp</creatorcontrib><creatorcontrib>Ozturk-Isik, Esin</creatorcontrib><title>Detecting IDH and TERTp Mutations in Diffuse Gliomas Using 1H-MRS with Attention Deep-Shallow Networks</title><title>Computers in biology and medicine</title><description>Preoperative and noninvasive detection of isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase gene promoter (TERTp) mutations in glioma is critical for prognosis and treatment planning. This study aims to develop deep learning classifiers to identify IDH and TERTp mutations using proton magnetic resonance spectroscopy (1H-MRS) and a one-dimensional convolutional neural network (1D-CNN) architecture.
This study included 1H-MRS data from 225 adult patients with hemispheric diffuse glioma (117 IDH mutants and 108 IDH wild-type; 99 TERTp mutants and 100 TERTp wild-type). The spectra were processed using the LCModel, and multiple deep learning models, including a baseline, a deep-shallow network, and an attention deep-shallow network (ADSN), were trained to classify mutational subgroups of gliomas. The Gradient-weighted Class Activation Mapping (Grad-CAM) technique was used to interpret the models’ decision-making process.
The ADSN model was the most effective for IDH mutation detection, achieving F1-scores of 93% on the validation set and 88% on the test set. For TERTp mutation detection, the ADSN model achieved F1-scores of 80% in the validation set and 81% in the test set, whereas TERTp-only gliomas were detected with F1-scores of 88% in the validation set and 86% in the test set using the same architecture.
Deep learning models accurately predicted the IDH and TERTp mutational subgroups of hemispheric diffuse gliomas by extracting relevant information from 1H-MRS spectra without the need for manual feature extraction.
•ADSN demonstrated strong performance in identifying IDH-mut and TERTp-mut gliomas.•DSN showed strong performance in identifying TERTp-only status, with 87% F1-score.•Grad-CAM highlighted 2HG, Lac, and tCho for IDH-mut, and Glx for IDH-wt gliomas.</description><subject>1D-CNN</subject><subject>deep learning</subject><subject>glioma</subject><subject>Grad-CAM</subject><subject>IDH mutation</subject><subject>proton MRS</subject><subject>TERTp mutation</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwD16ySbHzcOJlaUpbqQWpj7XlOBPqksQhdqj4e1IFiSWrkUb33NEchDAlE0ooezpNlKmaTJsK8olP_Khf8zhgV2hEk5h7JArCazQihBIvTPzoFt1ZeyKEhCQgI1Sk4EA5Xb_jVbrEss7xfr7dN3jTOem0qS3WNU51UXQW8KLs70iLD_YC0KW32e7wWbsjnjoH9SWPU4DG2x1lWZozfgV3Nu2HvUc3hSwtPPzOMTq8zPezpbd-W6xm07WnaEhjL5I8Z0WiWKYYTZSkLOMyylTm-4UfxACQ0SwOOeMQ5H4sVU5YFEIWJXGoIk6CMXocepvWfHZgnai0VVCWsgbTWRFQRngQ9119NBmiqjXWtlCIptWVbL8FJeKiVpzEn1pxUSsGtT36PKDQv_KloRVWaagV5LrtZYrc6P9LfgAjXoba</recordid><startdate>202503</startdate><enddate>202503</enddate><creator>Sacli-Bilmez, Banu</creator><creator>Bas, Abdullah</creator><creator>Danyeli, Ayça Erşen</creator><creator>Yakıcıer, M.Cengiz</creator><creator>Pamir, M.Necmettin</creator><creator>Özduman, Koray</creator><creator>Dinçer, Alp</creator><creator>Ozturk-Isik, Esin</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7606-8314</orcidid><orcidid>https://orcid.org/0000-0002-5958-8625</orcidid><orcidid>https://orcid.org/0000-0002-8997-878X</orcidid><orcidid>https://orcid.org/0000-0002-3543-0401</orcidid><orcidid>https://orcid.org/0000-0001-6263-3928</orcidid></search><sort><creationdate>202503</creationdate><title>Detecting IDH and TERTp Mutations in Diffuse Gliomas Using 1H-MRS with Attention Deep-Shallow Networks</title><author>Sacli-Bilmez, Banu ; Bas, Abdullah ; Danyeli, Ayça Erşen ; Yakıcıer, M.Cengiz ; Pamir, M.Necmettin ; Özduman, Koray ; Dinçer, Alp ; Ozturk-Isik, Esin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1417-5a9d6f8c6bc618ca16b9a5bcb22f237eeeb1b74969e3d27acd0654eb5874c5903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>1D-CNN</topic><topic>deep learning</topic><topic>glioma</topic><topic>Grad-CAM</topic><topic>IDH mutation</topic><topic>proton MRS</topic><topic>TERTp mutation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sacli-Bilmez, Banu</creatorcontrib><creatorcontrib>Bas, Abdullah</creatorcontrib><creatorcontrib>Danyeli, Ayça Erşen</creatorcontrib><creatorcontrib>Yakıcıer, M.Cengiz</creatorcontrib><creatorcontrib>Pamir, M.Necmettin</creatorcontrib><creatorcontrib>Özduman, Koray</creatorcontrib><creatorcontrib>Dinçer, Alp</creatorcontrib><creatorcontrib>Ozturk-Isik, Esin</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sacli-Bilmez, Banu</au><au>Bas, Abdullah</au><au>Danyeli, Ayça Erşen</au><au>Yakıcıer, M.Cengiz</au><au>Pamir, M.Necmettin</au><au>Özduman, Koray</au><au>Dinçer, Alp</au><au>Ozturk-Isik, Esin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting IDH and TERTp Mutations in Diffuse Gliomas Using 1H-MRS with Attention Deep-Shallow Networks</atitle><jtitle>Computers in biology and medicine</jtitle><date>2025-03</date><risdate>2025</risdate><volume>186</volume><spage>109736</spage><pages>109736-</pages><artnum>109736</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>Preoperative and noninvasive detection of isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase gene promoter (TERTp) mutations in glioma is critical for prognosis and treatment planning. This study aims to develop deep learning classifiers to identify IDH and TERTp mutations using proton magnetic resonance spectroscopy (1H-MRS) and a one-dimensional convolutional neural network (1D-CNN) architecture.
This study included 1H-MRS data from 225 adult patients with hemispheric diffuse glioma (117 IDH mutants and 108 IDH wild-type; 99 TERTp mutants and 100 TERTp wild-type). The spectra were processed using the LCModel, and multiple deep learning models, including a baseline, a deep-shallow network, and an attention deep-shallow network (ADSN), were trained to classify mutational subgroups of gliomas. The Gradient-weighted Class Activation Mapping (Grad-CAM) technique was used to interpret the models’ decision-making process.
The ADSN model was the most effective for IDH mutation detection, achieving F1-scores of 93% on the validation set and 88% on the test set. For TERTp mutation detection, the ADSN model achieved F1-scores of 80% in the validation set and 81% in the test set, whereas TERTp-only gliomas were detected with F1-scores of 88% in the validation set and 86% in the test set using the same architecture.
Deep learning models accurately predicted the IDH and TERTp mutational subgroups of hemispheric diffuse gliomas by extracting relevant information from 1H-MRS spectra without the need for manual feature extraction.
•ADSN demonstrated strong performance in identifying IDH-mut and TERTp-mut gliomas.•DSN showed strong performance in identifying TERTp-only status, with 87% F1-score.•Grad-CAM highlighted 2HG, Lac, and tCho for IDH-mut, and Glx for IDH-wt gliomas.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compbiomed.2025.109736</doi><orcidid>https://orcid.org/0000-0002-7606-8314</orcidid><orcidid>https://orcid.org/0000-0002-5958-8625</orcidid><orcidid>https://orcid.org/0000-0002-8997-878X</orcidid><orcidid>https://orcid.org/0000-0002-3543-0401</orcidid><orcidid>https://orcid.org/0000-0001-6263-3928</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2025-03, Vol.186, p.109736, Article 109736 |
issn | 0010-4825 1879-0534 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_3160937237 |
source | Elsevier ScienceDirect Journals |
subjects | 1D-CNN deep learning glioma Grad-CAM IDH mutation proton MRS TERTp mutation |
title | Detecting IDH and TERTp Mutations in Diffuse Gliomas Using 1H-MRS with Attention Deep-Shallow Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A57%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20IDH%20and%20TERTp%20Mutations%20in%20Diffuse%20Gliomas%20Using%201H-MRS%20with%20Attention%20Deep-Shallow%20Networks&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Sacli-Bilmez,%20Banu&rft.date=2025-03&rft.volume=186&rft.spage=109736&rft.pages=109736-&rft.artnum=109736&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2025.109736&rft_dat=%3Cproquest_cross%3E3160937237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3160937237&rft_id=info:pmid/&rft_els_id=S0010482525000861&rfr_iscdi=true |