Synthesis and Characterization of Discrete Nickel Phosphide Nanoparticles: Effect of Surface Ligation Chemistry on Catalytic Hydrodesulfurization of Thiophene

Discrete, unsupported nanoparticles of Ni 2 P have been prepared by using a solution‐phase method with bis(1,5‐cyclooctadiene)nickel(0) [Ni(COD) 2 ] as the nickel source and trioctylphosphine (TOP) as the phosphorus source in the presence of the coordinating solvent trioctylphosphine oxide (TOPO). N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2007-12, Vol.17 (18), p.3933-3939
Hauptverfasser: Senevirathne, K., Burns, A. W., Bussell, M. E., Brock, S. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3939
container_issue 18
container_start_page 3933
container_title Advanced functional materials
container_volume 17
creator Senevirathne, K.
Burns, A. W.
Bussell, M. E.
Brock, S. L.
description Discrete, unsupported nanoparticles of Ni 2 P have been prepared by using a solution‐phase method with bis(1,5‐cyclooctadiene)nickel(0) [Ni(COD) 2 ] as the nickel source and trioctylphosphine (TOP) as the phosphorus source in the presence of the coordinating solvent trioctylphosphine oxide (TOPO). Ni 2 P nanoparticles prepared at 345 °C have an average crystallite size of 10.2 ± 0.7 nm and are capped with TOP and/or TOPO coordinating agents. The surface of the Ni 2 P nanoparticles can be modified by washing with CHCl 3 or by exchanging TOP/TOPO groups with mercaptoundecanoic acid (MUA). The surface areas of these nanoparticles are on the order of 30–70 m 2 g –1 . As‐prepared and MUA‐capped nanoparticles undergo a phase transformation at 370 °C under reducing conditions, but CHCl 3 ‐washed Ni 2 P nanoparticles retain the Ni 2 P structure. CHCl 3 ‐washed and MUA‐capped nanoparticles exhibit higher HDS catalytic activity than as‐prepared nanoparticles or unsupported Ni 2 P prepared by temperature‐programmed reduction of a phosphate precursor. The surface modifications have a clear effect on the catalytic activity as well as the thermal stability of Ni 2 P nanoparticles under reducing conditions.
doi_str_mv 10.1002/adfm.200700758
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31609304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31609304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-9ffe06b7fe06e0234a277e8904635bde65a38e77596a971573b79db418aa7bfe3</originalsourceid><addsrcrecordid>eNpNUctu1DAUjRCV6INt116xy2DHiZ2wQ9MyRUwfUgfozrpxronbTBxsRyJ8DN9KokEjpKv70jn3oZMkl4yuGKXZe2jMfpVRKmcrylfJKRNMpJxm5etjzp7eJGchPFPKpOT5afLncepji8EGAn1D1i140BG9_Q3Rup44Q65s0B4jkjurX7AjD60LQ2ubuQG9G8BHqzsMH8i1MajjQnkcvQGNZGt_HMasW9zbEP1ElgIidNPMIjdT412DYezM-P_KXWvd0GKPF8mJgS7g23_xPPn66Xq3vkm395vP64_bVHNaxrSaN1NRy8UjzXgOmZRYVjQXvKgbFAXwEqUsKgGVZIXktayaOmclgKwN8vPk3WHu4N3PEUNU87kauw56dGNQnAlacZrPwNUBqL0LwaNRg7d78JNiVC0yqEUGdZRhJqQHwvw-_jqiwb8oIbks1Pe7jdp9u7r9srkVquJ_AcHOjrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31609304</pqid></control><display><type>article</type><title>Synthesis and Characterization of Discrete Nickel Phosphide Nanoparticles: Effect of Surface Ligation Chemistry on Catalytic Hydrodesulfurization of Thiophene</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Senevirathne, K. ; Burns, A. W. ; Bussell, M. E. ; Brock, S. L.</creator><creatorcontrib>Senevirathne, K. ; Burns, A. W. ; Bussell, M. E. ; Brock, S. L.</creatorcontrib><description>Discrete, unsupported nanoparticles of Ni 2 P have been prepared by using a solution‐phase method with bis(1,5‐cyclooctadiene)nickel(0) [Ni(COD) 2 ] as the nickel source and trioctylphosphine (TOP) as the phosphorus source in the presence of the coordinating solvent trioctylphosphine oxide (TOPO). Ni 2 P nanoparticles prepared at 345 °C have an average crystallite size of 10.2 ± 0.7 nm and are capped with TOP and/or TOPO coordinating agents. The surface of the Ni 2 P nanoparticles can be modified by washing with CHCl 3 or by exchanging TOP/TOPO groups with mercaptoundecanoic acid (MUA). The surface areas of these nanoparticles are on the order of 30–70 m 2 g –1 . As‐prepared and MUA‐capped nanoparticles undergo a phase transformation at 370 °C under reducing conditions, but CHCl 3 ‐washed Ni 2 P nanoparticles retain the Ni 2 P structure. CHCl 3 ‐washed and MUA‐capped nanoparticles exhibit higher HDS catalytic activity than as‐prepared nanoparticles or unsupported Ni 2 P prepared by temperature‐programmed reduction of a phosphate precursor. The surface modifications have a clear effect on the catalytic activity as well as the thermal stability of Ni 2 P nanoparticles under reducing conditions.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.200700758</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Catalysts ; Inorganic nanoparticles ; Metals ; Nickel ; Structure-Property relationships</subject><ispartof>Advanced functional materials, 2007-12, Vol.17 (18), p.3933-3939</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-9ffe06b7fe06e0234a277e8904635bde65a38e77596a971573b79db418aa7bfe3</citedby><cites>FETCH-LOGICAL-c308t-9ffe06b7fe06e0234a277e8904635bde65a38e77596a971573b79db418aa7bfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Senevirathne, K.</creatorcontrib><creatorcontrib>Burns, A. W.</creatorcontrib><creatorcontrib>Bussell, M. E.</creatorcontrib><creatorcontrib>Brock, S. L.</creatorcontrib><title>Synthesis and Characterization of Discrete Nickel Phosphide Nanoparticles: Effect of Surface Ligation Chemistry on Catalytic Hydrodesulfurization of Thiophene</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Discrete, unsupported nanoparticles of Ni 2 P have been prepared by using a solution‐phase method with bis(1,5‐cyclooctadiene)nickel(0) [Ni(COD) 2 ] as the nickel source and trioctylphosphine (TOP) as the phosphorus source in the presence of the coordinating solvent trioctylphosphine oxide (TOPO). Ni 2 P nanoparticles prepared at 345 °C have an average crystallite size of 10.2 ± 0.7 nm and are capped with TOP and/or TOPO coordinating agents. The surface of the Ni 2 P nanoparticles can be modified by washing with CHCl 3 or by exchanging TOP/TOPO groups with mercaptoundecanoic acid (MUA). The surface areas of these nanoparticles are on the order of 30–70 m 2 g –1 . As‐prepared and MUA‐capped nanoparticles undergo a phase transformation at 370 °C under reducing conditions, but CHCl 3 ‐washed Ni 2 P nanoparticles retain the Ni 2 P structure. CHCl 3 ‐washed and MUA‐capped nanoparticles exhibit higher HDS catalytic activity than as‐prepared nanoparticles or unsupported Ni 2 P prepared by temperature‐programmed reduction of a phosphate precursor. The surface modifications have a clear effect on the catalytic activity as well as the thermal stability of Ni 2 P nanoparticles under reducing conditions.</description><subject>Catalysts</subject><subject>Inorganic nanoparticles</subject><subject>Metals</subject><subject>Nickel</subject><subject>Structure-Property relationships</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpNUctu1DAUjRCV6INt116xy2DHiZ2wQ9MyRUwfUgfozrpxronbTBxsRyJ8DN9KokEjpKv70jn3oZMkl4yuGKXZe2jMfpVRKmcrylfJKRNMpJxm5etjzp7eJGchPFPKpOT5afLncepji8EGAn1D1i140BG9_Q3Rup44Q65s0B4jkjurX7AjD60LQ2ubuQG9G8BHqzsMH8i1MajjQnkcvQGNZGt_HMasW9zbEP1ElgIidNPMIjdT412DYezM-P_KXWvd0GKPF8mJgS7g23_xPPn66Xq3vkm395vP64_bVHNaxrSaN1NRy8UjzXgOmZRYVjQXvKgbFAXwEqUsKgGVZIXktayaOmclgKwN8vPk3WHu4N3PEUNU87kauw56dGNQnAlacZrPwNUBqL0LwaNRg7d78JNiVC0yqEUGdZRhJqQHwvw-_jqiwb8oIbks1Pe7jdp9u7r9srkVquJ_AcHOjrw</recordid><startdate>20071217</startdate><enddate>20071217</enddate><creator>Senevirathne, K.</creator><creator>Burns, A. W.</creator><creator>Bussell, M. E.</creator><creator>Brock, S. L.</creator><general>WILEY-VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20071217</creationdate><title>Synthesis and Characterization of Discrete Nickel Phosphide Nanoparticles: Effect of Surface Ligation Chemistry on Catalytic Hydrodesulfurization of Thiophene</title><author>Senevirathne, K. ; Burns, A. W. ; Bussell, M. E. ; Brock, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-9ffe06b7fe06e0234a277e8904635bde65a38e77596a971573b79db418aa7bfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Catalysts</topic><topic>Inorganic nanoparticles</topic><topic>Metals</topic><topic>Nickel</topic><topic>Structure-Property relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Senevirathne, K.</creatorcontrib><creatorcontrib>Burns, A. W.</creatorcontrib><creatorcontrib>Bussell, M. E.</creatorcontrib><creatorcontrib>Brock, S. L.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Senevirathne, K.</au><au>Burns, A. W.</au><au>Bussell, M. E.</au><au>Brock, S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Characterization of Discrete Nickel Phosphide Nanoparticles: Effect of Surface Ligation Chemistry on Catalytic Hydrodesulfurization of Thiophene</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2007-12-17</date><risdate>2007</risdate><volume>17</volume><issue>18</issue><spage>3933</spage><epage>3939</epage><pages>3933-3939</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Discrete, unsupported nanoparticles of Ni 2 P have been prepared by using a solution‐phase method with bis(1,5‐cyclooctadiene)nickel(0) [Ni(COD) 2 ] as the nickel source and trioctylphosphine (TOP) as the phosphorus source in the presence of the coordinating solvent trioctylphosphine oxide (TOPO). Ni 2 P nanoparticles prepared at 345 °C have an average crystallite size of 10.2 ± 0.7 nm and are capped with TOP and/or TOPO coordinating agents. The surface of the Ni 2 P nanoparticles can be modified by washing with CHCl 3 or by exchanging TOP/TOPO groups with mercaptoundecanoic acid (MUA). The surface areas of these nanoparticles are on the order of 30–70 m 2 g –1 . As‐prepared and MUA‐capped nanoparticles undergo a phase transformation at 370 °C under reducing conditions, but CHCl 3 ‐washed Ni 2 P nanoparticles retain the Ni 2 P structure. CHCl 3 ‐washed and MUA‐capped nanoparticles exhibit higher HDS catalytic activity than as‐prepared nanoparticles or unsupported Ni 2 P prepared by temperature‐programmed reduction of a phosphate precursor. The surface modifications have a clear effect on the catalytic activity as well as the thermal stability of Ni 2 P nanoparticles under reducing conditions.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.200700758</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2007-12, Vol.17 (18), p.3933-3939
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_31609304
source Wiley Online Library Journals Frontfile Complete
subjects Catalysts
Inorganic nanoparticles
Metals
Nickel
Structure-Property relationships
title Synthesis and Characterization of Discrete Nickel Phosphide Nanoparticles: Effect of Surface Ligation Chemistry on Catalytic Hydrodesulfurization of Thiophene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Characterization%20of%20Discrete%20Nickel%20Phosphide%20Nanoparticles:%20Effect%20of%20Surface%20Ligation%20Chemistry%20on%20Catalytic%20Hydrodesulfurization%20of%20Thiophene&rft.jtitle=Advanced%20functional%20materials&rft.au=Senevirathne,%20K.&rft.date=2007-12-17&rft.volume=17&rft.issue=18&rft.spage=3933&rft.epage=3939&rft.pages=3933-3939&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.200700758&rft_dat=%3Cproquest_cross%3E31609304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31609304&rft_id=info:pmid/&rfr_iscdi=true