Computational Chemistry Study of pH-Responsive Fluorescent Probes and Development of Supporting Software
This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and ( )-3-(2-(1 -benzo[ ]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9 -carbazole (BIMC). Using time-dependent density functional theo...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2025-01, Vol.30 (2), p.273 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 273 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 30 |
creator | Zhu, Ximeng Wei, Yongchun Liu, Xiaogang |
description | This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and (
)-3-(2-(1
-benzo[
]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9
-carbazole (BIMC). Using time-dependent density functional theory (TDDFT), we successfully predicted the fluorescence emission wavelengths of BBP under various protonation states, achieving an average deviation of 6.0% from experimental excitation energies. Molecular dynamics simulations elucidated the microscopic mechanism underlying BBP's fluorescence quenching under acidic conditions. The spectroscopic predictions for BIMC were performed using the STEOM-DLPNO-CCSD method, yielding an average deviation of merely 0.57% from experimental values. Based on Einstein's spontaneous emission formula and empirical internal conversion rate formulas, we calculated fluorescence quantum yields for spectral intensity calibration, enabling the accurate prediction of experimental spectra. To streamline the computational workflow, we developed and open-sourced the EasySpecCalc software v0.0.1 on GitHub, aiming to facilitate the design and development of fluorescent probes. |
doi_str_mv | 10.3390/molecules30020273 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_3159802806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dfdb469bc7c843229e48bfc444ace102</doaj_id><sourcerecordid>3159578955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-ca181eaab19e264f20aeef9aa91ed3eb432f86ed565696b563977b37fc2e1bb13</originalsourceid><addsrcrecordid>eNplkk9v1DAQxSMEoqXwAbggS1y4BPwvTnxCaKG0UiUQC2fLdsa7WTlxsJ1F--3xsqVq4WRr5r2fZuxXVS8JfsuYxO_G4MEuHhLDmGLaskfVOeEU1wxz-fje_ax6ltKuiAgnzdPqjMlOYMLZebVdhXFess5DmLRHqy2MQ8rxgNZ56Q8oODRf1d8gzWFKwx7QpV9ChGRhyuhrDAYS0lOPPsIefJjHY7l41ss8h5iHaYPWweVfOsLz6onTPsGL2_Oi-nH56fvqqr758vl69eGmtqwVubaadAS0NkQCFdxRrAGc1FoS6BkYzqjrBPSNaIQUphFMtq1hrbMUiDGEXVTXJ24f9E7NcRh1PKigB_WnEOJG6TKZ9aB61xsupLGt7QqXSuCdcZZzri0QTAvr_Yk1L2aE_rh01P4B9GFnGrZqE_aKkFa0tDsS3twSYvi5QMqqPK8F7_UEYUmKkUZ2mHZYFOnrf6S7sMTyKSdV03ayaYqKnFQ2hpQiuLtpCFbHUKj_QlE8r-6vcef4mwL2G5ust-E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159578955</pqid></control><display><type>article</type><title>Computational Chemistry Study of pH-Responsive Fluorescent Probes and Development of Supporting Software</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhu, Ximeng ; Wei, Yongchun ; Liu, Xiaogang</creator><creatorcontrib>Zhu, Ximeng ; Wei, Yongchun ; Liu, Xiaogang</creatorcontrib><description>This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and (
)-3-(2-(1
-benzo[
]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9
-carbazole (BIMC). Using time-dependent density functional theory (TDDFT), we successfully predicted the fluorescence emission wavelengths of BBP under various protonation states, achieving an average deviation of 6.0% from experimental excitation energies. Molecular dynamics simulations elucidated the microscopic mechanism underlying BBP's fluorescence quenching under acidic conditions. The spectroscopic predictions for BIMC were performed using the STEOM-DLPNO-CCSD method, yielding an average deviation of merely 0.57% from experimental values. Based on Einstein's spontaneous emission formula and empirical internal conversion rate formulas, we calculated fluorescence quantum yields for spectral intensity calibration, enabling the accurate prediction of experimental spectra. To streamline the computational workflow, we developed and open-sourced the EasySpecCalc software v0.0.1 on GitHub, aiming to facilitate the design and development of fluorescent probes.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules30020273</identifier><identifier>PMID: 39860143</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Cancer ; Computational chemistry ; fluorescent probe ; Investigations ; molecular dynamics simulation ; Nitrogen ; pH responsiveness ; quantum chemical calculation ; Software</subject><ispartof>Molecules (Basel, Switzerland), 2025-01, Vol.30 (2), p.273</ispartof><rights>2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2025 by the authors. 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-ca181eaab19e264f20aeef9aa91ed3eb432f86ed565696b563977b37fc2e1bb13</cites><orcidid>0000-0002-5853-2005 ; 0009-0000-2691-5944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767282/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767282/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39860143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Ximeng</creatorcontrib><creatorcontrib>Wei, Yongchun</creatorcontrib><creatorcontrib>Liu, Xiaogang</creatorcontrib><title>Computational Chemistry Study of pH-Responsive Fluorescent Probes and Development of Supporting Software</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and (
)-3-(2-(1
-benzo[
]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9
-carbazole (BIMC). Using time-dependent density functional theory (TDDFT), we successfully predicted the fluorescence emission wavelengths of BBP under various protonation states, achieving an average deviation of 6.0% from experimental excitation energies. Molecular dynamics simulations elucidated the microscopic mechanism underlying BBP's fluorescence quenching under acidic conditions. The spectroscopic predictions for BIMC were performed using the STEOM-DLPNO-CCSD method, yielding an average deviation of merely 0.57% from experimental values. Based on Einstein's spontaneous emission formula and empirical internal conversion rate formulas, we calculated fluorescence quantum yields for spectral intensity calibration, enabling the accurate prediction of experimental spectra. To streamline the computational workflow, we developed and open-sourced the EasySpecCalc software v0.0.1 on GitHub, aiming to facilitate the design and development of fluorescent probes.</description><subject>Cancer</subject><subject>Computational chemistry</subject><subject>fluorescent probe</subject><subject>Investigations</subject><subject>molecular dynamics simulation</subject><subject>Nitrogen</subject><subject>pH responsiveness</subject><subject>quantum chemical calculation</subject><subject>Software</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNplkk9v1DAQxSMEoqXwAbggS1y4BPwvTnxCaKG0UiUQC2fLdsa7WTlxsJ1F--3xsqVq4WRr5r2fZuxXVS8JfsuYxO_G4MEuHhLDmGLaskfVOeEU1wxz-fje_ax6ltKuiAgnzdPqjMlOYMLZebVdhXFess5DmLRHqy2MQ8rxgNZ56Q8oODRf1d8gzWFKwx7QpV9ChGRhyuhrDAYS0lOPPsIefJjHY7l41ss8h5iHaYPWweVfOsLz6onTPsGL2_Oi-nH56fvqqr758vl69eGmtqwVubaadAS0NkQCFdxRrAGc1FoS6BkYzqjrBPSNaIQUphFMtq1hrbMUiDGEXVTXJ24f9E7NcRh1PKigB_WnEOJG6TKZ9aB61xsupLGt7QqXSuCdcZZzri0QTAvr_Yk1L2aE_rh01P4B9GFnGrZqE_aKkFa0tDsS3twSYvi5QMqqPK8F7_UEYUmKkUZ2mHZYFOnrf6S7sMTyKSdV03ayaYqKnFQ2hpQiuLtpCFbHUKj_QlE8r-6vcef4mwL2G5ust-E</recordid><startdate>20250112</startdate><enddate>20250112</enddate><creator>Zhu, Ximeng</creator><creator>Wei, Yongchun</creator><creator>Liu, Xiaogang</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5853-2005</orcidid><orcidid>https://orcid.org/0009-0000-2691-5944</orcidid></search><sort><creationdate>20250112</creationdate><title>Computational Chemistry Study of pH-Responsive Fluorescent Probes and Development of Supporting Software</title><author>Zhu, Ximeng ; Wei, Yongchun ; Liu, Xiaogang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-ca181eaab19e264f20aeef9aa91ed3eb432f86ed565696b563977b37fc2e1bb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Cancer</topic><topic>Computational chemistry</topic><topic>fluorescent probe</topic><topic>Investigations</topic><topic>molecular dynamics simulation</topic><topic>Nitrogen</topic><topic>pH responsiveness</topic><topic>quantum chemical calculation</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Ximeng</creatorcontrib><creatorcontrib>Wei, Yongchun</creatorcontrib><creatorcontrib>Liu, Xiaogang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Ximeng</au><au>Wei, Yongchun</au><au>Liu, Xiaogang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Chemistry Study of pH-Responsive Fluorescent Probes and Development of Supporting Software</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2025-01-12</date><risdate>2025</risdate><volume>30</volume><issue>2</issue><spage>273</spage><pages>273-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and (
)-3-(2-(1
-benzo[
]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9
-carbazole (BIMC). Using time-dependent density functional theory (TDDFT), we successfully predicted the fluorescence emission wavelengths of BBP under various protonation states, achieving an average deviation of 6.0% from experimental excitation energies. Molecular dynamics simulations elucidated the microscopic mechanism underlying BBP's fluorescence quenching under acidic conditions. The spectroscopic predictions for BIMC were performed using the STEOM-DLPNO-CCSD method, yielding an average deviation of merely 0.57% from experimental values. Based on Einstein's spontaneous emission formula and empirical internal conversion rate formulas, we calculated fluorescence quantum yields for spectral intensity calibration, enabling the accurate prediction of experimental spectra. To streamline the computational workflow, we developed and open-sourced the EasySpecCalc software v0.0.1 on GitHub, aiming to facilitate the design and development of fluorescent probes.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39860143</pmid><doi>10.3390/molecules30020273</doi><orcidid>https://orcid.org/0000-0002-5853-2005</orcidid><orcidid>https://orcid.org/0009-0000-2691-5944</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2025-01, Vol.30 (2), p.273 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_proquest_miscellaneous_3159802806 |
source | MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Cancer Computational chemistry fluorescent probe Investigations molecular dynamics simulation Nitrogen pH responsiveness quantum chemical calculation Software |
title | Computational Chemistry Study of pH-Responsive Fluorescent Probes and Development of Supporting Software |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Chemistry%20Study%20of%20pH-Responsive%20Fluorescent%20Probes%20and%20Development%20of%20Supporting%20Software&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Zhu,%20Ximeng&rft.date=2025-01-12&rft.volume=30&rft.issue=2&rft.spage=273&rft.pages=273-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules30020273&rft_dat=%3Cproquest_doaj_%3E3159578955%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3159578955&rft_id=info:pmid/39860143&rft_doaj_id=oai_doaj_org_article_dfdb469bc7c843229e48bfc444ace102&rfr_iscdi=true |