Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues

Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins. Cellular indexing of transcriptomes and epitopes (CITE-seq) enables simultaneous profiling of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports methods 2025-01, p.100938, Article 100938
Hauptverfasser: Caron, Daniel P, Specht, William L, Chen, David, Wells, Steven B, Szabo, Peter A, Jensen, Isaac J, Farber, Donna L, Sims, Peter A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 100938
container_title Cell reports methods
container_volume
creator Caron, Daniel P
Specht, William L
Chen, David
Wells, Steven B
Szabo, Peter A
Jensen, Isaac J
Farber, Donna L
Sims, Peter A
description Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins. Cellular indexing of transcriptomes and epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell-type annotation requires a classifier that integrates multimodal data. Here, we describe multimodal classifier hierarchy (MMoCHi), a marker-based approach for accurate cell-type classification across multiple single-cell modalities that does not rely on reference atlases. We benchmark MMoCHi using sorted T lymphocyte subsets and annotate a cross-tissue human immune cell dataset. MMoCHi outperforms leading transcriptome-based classifiers and multimodal unsupervised clustering in its ability to identify immune cell subsets that are not readily resolved and to reveal subset markers. MMoCHi is designed for adaptability and can integrate annotation of cell types and developmental states across diverse lineages, samples, or modalities.
doi_str_mv 10.1016/j.crmeth.2024.100938
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3156526256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3156526256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1478-acabd4c8853efe8bd3fa2d7de4f1c9b136fba32f97c30152017376bc423658263</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EolXpHyDkJZsUP2InWaKqQKUiNmVtOfaYusqjjZ0Ff0_SFsRqHrp37uggdE_JghIqn_YL09UQdwtGWDqsSMHzKzRlUmYJ45m4_tdP0DyEPSGECcp5QW_RhBc5TQmTU3R876vo69bqCu88dLozO2-GwVQ6BO-GPvq2wa3Dy_V2lQQ4YqujxhYq34COELCv674BbKCqcIinlTZdGwI-Sb7GubE4-hB6CHfoxukqwPxSZ-jzZbVdviWbj9f18nmTGJpmeaKNLm1q8lxwcJCXljvNbGYhddQUJeXSlZozV2SGEyoYoRnPZGlSxqXImeQz9Hi-e-ja45AbVe3D-KNuoO2D4lRIwSQTozQ9S09fd-DUofO17r4VJWrkrfbqzFuNvNWZ92B7uCT0ZQ32z_RLl_8AG7x_Nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156526256</pqid></control><display><type>article</type><title>Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Caron, Daniel P ; Specht, William L ; Chen, David ; Wells, Steven B ; Szabo, Peter A ; Jensen, Isaac J ; Farber, Donna L ; Sims, Peter A</creator><creatorcontrib>Caron, Daniel P ; Specht, William L ; Chen, David ; Wells, Steven B ; Szabo, Peter A ; Jensen, Isaac J ; Farber, Donna L ; Sims, Peter A</creatorcontrib><description>Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins. Cellular indexing of transcriptomes and epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell-type annotation requires a classifier that integrates multimodal data. Here, we describe multimodal classifier hierarchy (MMoCHi), a marker-based approach for accurate cell-type classification across multiple single-cell modalities that does not rely on reference atlases. We benchmark MMoCHi using sorted T lymphocyte subsets and annotate a cross-tissue human immune cell dataset. MMoCHi outperforms leading transcriptome-based classifiers and multimodal unsupervised clustering in its ability to identify immune cell subsets that are not readily resolved and to reveal subset markers. MMoCHi is designed for adaptability and can integrate annotation of cell types and developmental states across diverse lineages, samples, or modalities.</description><identifier>ISSN: 2667-2375</identifier><identifier>EISSN: 2667-2375</identifier><identifier>DOI: 10.1016/j.crmeth.2024.100938</identifier><identifier>PMID: 39814026</identifier><language>eng</language><publisher>United States</publisher><ispartof>Cell reports methods, 2025-01, p.100938, Article 100938</ispartof><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1478-acabd4c8853efe8bd3fa2d7de4f1c9b136fba32f97c30152017376bc423658263</cites><orcidid>0000-0002-3921-4837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39814026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caron, Daniel P</creatorcontrib><creatorcontrib>Specht, William L</creatorcontrib><creatorcontrib>Chen, David</creatorcontrib><creatorcontrib>Wells, Steven B</creatorcontrib><creatorcontrib>Szabo, Peter A</creatorcontrib><creatorcontrib>Jensen, Isaac J</creatorcontrib><creatorcontrib>Farber, Donna L</creatorcontrib><creatorcontrib>Sims, Peter A</creatorcontrib><title>Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues</title><title>Cell reports methods</title><addtitle>Cell Rep Methods</addtitle><description>Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins. Cellular indexing of transcriptomes and epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell-type annotation requires a classifier that integrates multimodal data. Here, we describe multimodal classifier hierarchy (MMoCHi), a marker-based approach for accurate cell-type classification across multiple single-cell modalities that does not rely on reference atlases. We benchmark MMoCHi using sorted T lymphocyte subsets and annotate a cross-tissue human immune cell dataset. MMoCHi outperforms leading transcriptome-based classifiers and multimodal unsupervised clustering in its ability to identify immune cell subsets that are not readily resolved and to reveal subset markers. MMoCHi is designed for adaptability and can integrate annotation of cell types and developmental states across diverse lineages, samples, or modalities.</description><issn>2667-2375</issn><issn>2667-2375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EolXpHyDkJZsUP2InWaKqQKUiNmVtOfaYusqjjZ0Ff0_SFsRqHrp37uggdE_JghIqn_YL09UQdwtGWDqsSMHzKzRlUmYJ45m4_tdP0DyEPSGECcp5QW_RhBc5TQmTU3R876vo69bqCu88dLozO2-GwVQ6BO-GPvq2wa3Dy_V2lQQ4YqujxhYq34COELCv674BbKCqcIinlTZdGwI-Sb7GubE4-hB6CHfoxukqwPxSZ-jzZbVdviWbj9f18nmTGJpmeaKNLm1q8lxwcJCXljvNbGYhddQUJeXSlZozV2SGEyoYoRnPZGlSxqXImeQz9Hi-e-ja45AbVe3D-KNuoO2D4lRIwSQTozQ9S09fd-DUofO17r4VJWrkrfbqzFuNvNWZ92B7uCT0ZQ32z_RLl_8AG7x_Nw</recordid><startdate>20250105</startdate><enddate>20250105</enddate><creator>Caron, Daniel P</creator><creator>Specht, William L</creator><creator>Chen, David</creator><creator>Wells, Steven B</creator><creator>Szabo, Peter A</creator><creator>Jensen, Isaac J</creator><creator>Farber, Donna L</creator><creator>Sims, Peter A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3921-4837</orcidid></search><sort><creationdate>20250105</creationdate><title>Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues</title><author>Caron, Daniel P ; Specht, William L ; Chen, David ; Wells, Steven B ; Szabo, Peter A ; Jensen, Isaac J ; Farber, Donna L ; Sims, Peter A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1478-acabd4c8853efe8bd3fa2d7de4f1c9b136fba32f97c30152017376bc423658263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caron, Daniel P</creatorcontrib><creatorcontrib>Specht, William L</creatorcontrib><creatorcontrib>Chen, David</creatorcontrib><creatorcontrib>Wells, Steven B</creatorcontrib><creatorcontrib>Szabo, Peter A</creatorcontrib><creatorcontrib>Jensen, Isaac J</creatorcontrib><creatorcontrib>Farber, Donna L</creatorcontrib><creatorcontrib>Sims, Peter A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell reports methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caron, Daniel P</au><au>Specht, William L</au><au>Chen, David</au><au>Wells, Steven B</au><au>Szabo, Peter A</au><au>Jensen, Isaac J</au><au>Farber, Donna L</au><au>Sims, Peter A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues</atitle><jtitle>Cell reports methods</jtitle><addtitle>Cell Rep Methods</addtitle><date>2025-01-05</date><risdate>2025</risdate><spage>100938</spage><pages>100938-</pages><artnum>100938</artnum><issn>2667-2375</issn><eissn>2667-2375</eissn><abstract>Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins. Cellular indexing of transcriptomes and epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell-type annotation requires a classifier that integrates multimodal data. Here, we describe multimodal classifier hierarchy (MMoCHi), a marker-based approach for accurate cell-type classification across multiple single-cell modalities that does not rely on reference atlases. We benchmark MMoCHi using sorted T lymphocyte subsets and annotate a cross-tissue human immune cell dataset. MMoCHi outperforms leading transcriptome-based classifiers and multimodal unsupervised clustering in its ability to identify immune cell subsets that are not readily resolved and to reveal subset markers. MMoCHi is designed for adaptability and can integrate annotation of cell types and developmental states across diverse lineages, samples, or modalities.</abstract><cop>United States</cop><pmid>39814026</pmid><doi>10.1016/j.crmeth.2024.100938</doi><orcidid>https://orcid.org/0000-0002-3921-4837</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2667-2375
ispartof Cell reports methods, 2025-01, p.100938, Article 100938
issn 2667-2375
2667-2375
language eng
recordid cdi_proquest_miscellaneous_3156526256
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
title Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20hierarchical%20classification%20of%20CITE-seq%20data%20delineates%20immune%20cell%20states%20across%20lineages%20and%20tissues&rft.jtitle=Cell%20reports%20methods&rft.au=Caron,%20Daniel%20P&rft.date=2025-01-05&rft.spage=100938&rft.pages=100938-&rft.artnum=100938&rft.issn=2667-2375&rft.eissn=2667-2375&rft_id=info:doi/10.1016/j.crmeth.2024.100938&rft_dat=%3Cproquest_cross%3E3156526256%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3156526256&rft_id=info:pmid/39814026&rfr_iscdi=true