Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues
Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins. Cellular indexing of transcriptomes and epitopes (CITE-seq) enables simultaneous profiling of...
Gespeichert in:
Veröffentlicht in: | Cell reports methods 2025-01, p.100938, Article 100938 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 100938 |
container_title | Cell reports methods |
container_volume | |
creator | Caron, Daniel P Specht, William L Chen, David Wells, Steven B Szabo, Peter A Jensen, Isaac J Farber, Donna L Sims, Peter A |
description | Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins. Cellular indexing of transcriptomes and epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell-type annotation requires a classifier that integrates multimodal data. Here, we describe multimodal classifier hierarchy (MMoCHi), a marker-based approach for accurate cell-type classification across multiple single-cell modalities that does not rely on reference atlases. We benchmark MMoCHi using sorted T lymphocyte subsets and annotate a cross-tissue human immune cell dataset. MMoCHi outperforms leading transcriptome-based classifiers and multimodal unsupervised clustering in its ability to identify immune cell subsets that are not readily resolved and to reveal subset markers. MMoCHi is designed for adaptability and can integrate annotation of cell types and developmental states across diverse lineages, samples, or modalities. |
doi_str_mv | 10.1016/j.crmeth.2024.100938 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3156526256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3156526256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1478-acabd4c8853efe8bd3fa2d7de4f1c9b136fba32f97c30152017376bc423658263</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EolXpHyDkJZsUP2InWaKqQKUiNmVtOfaYusqjjZ0Ff0_SFsRqHrp37uggdE_JghIqn_YL09UQdwtGWDqsSMHzKzRlUmYJ45m4_tdP0DyEPSGECcp5QW_RhBc5TQmTU3R876vo69bqCu88dLozO2-GwVQ6BO-GPvq2wa3Dy_V2lQQ4YqujxhYq34COELCv674BbKCqcIinlTZdGwI-Sb7GubE4-hB6CHfoxukqwPxSZ-jzZbVdviWbj9f18nmTGJpmeaKNLm1q8lxwcJCXljvNbGYhddQUJeXSlZozV2SGEyoYoRnPZGlSxqXImeQz9Hi-e-ja45AbVe3D-KNuoO2D4lRIwSQTozQ9S09fd-DUofO17r4VJWrkrfbqzFuNvNWZ92B7uCT0ZQ32z_RLl_8AG7x_Nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156526256</pqid></control><display><type>article</type><title>Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Caron, Daniel P ; Specht, William L ; Chen, David ; Wells, Steven B ; Szabo, Peter A ; Jensen, Isaac J ; Farber, Donna L ; Sims, Peter A</creator><creatorcontrib>Caron, Daniel P ; Specht, William L ; Chen, David ; Wells, Steven B ; Szabo, Peter A ; Jensen, Isaac J ; Farber, Donna L ; Sims, Peter A</creatorcontrib><description>Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins. Cellular indexing of transcriptomes and epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell-type annotation requires a classifier that integrates multimodal data. Here, we describe multimodal classifier hierarchy (MMoCHi), a marker-based approach for accurate cell-type classification across multiple single-cell modalities that does not rely on reference atlases. We benchmark MMoCHi using sorted T lymphocyte subsets and annotate a cross-tissue human immune cell dataset. MMoCHi outperforms leading transcriptome-based classifiers and multimodal unsupervised clustering in its ability to identify immune cell subsets that are not readily resolved and to reveal subset markers. MMoCHi is designed for adaptability and can integrate annotation of cell types and developmental states across diverse lineages, samples, or modalities.</description><identifier>ISSN: 2667-2375</identifier><identifier>EISSN: 2667-2375</identifier><identifier>DOI: 10.1016/j.crmeth.2024.100938</identifier><identifier>PMID: 39814026</identifier><language>eng</language><publisher>United States</publisher><ispartof>Cell reports methods, 2025-01, p.100938, Article 100938</ispartof><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1478-acabd4c8853efe8bd3fa2d7de4f1c9b136fba32f97c30152017376bc423658263</cites><orcidid>0000-0002-3921-4837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39814026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caron, Daniel P</creatorcontrib><creatorcontrib>Specht, William L</creatorcontrib><creatorcontrib>Chen, David</creatorcontrib><creatorcontrib>Wells, Steven B</creatorcontrib><creatorcontrib>Szabo, Peter A</creatorcontrib><creatorcontrib>Jensen, Isaac J</creatorcontrib><creatorcontrib>Farber, Donna L</creatorcontrib><creatorcontrib>Sims, Peter A</creatorcontrib><title>Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues</title><title>Cell reports methods</title><addtitle>Cell Rep Methods</addtitle><description>Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins. Cellular indexing of transcriptomes and epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell-type annotation requires a classifier that integrates multimodal data. Here, we describe multimodal classifier hierarchy (MMoCHi), a marker-based approach for accurate cell-type classification across multiple single-cell modalities that does not rely on reference atlases. We benchmark MMoCHi using sorted T lymphocyte subsets and annotate a cross-tissue human immune cell dataset. MMoCHi outperforms leading transcriptome-based classifiers and multimodal unsupervised clustering in its ability to identify immune cell subsets that are not readily resolved and to reveal subset markers. MMoCHi is designed for adaptability and can integrate annotation of cell types and developmental states across diverse lineages, samples, or modalities.</description><issn>2667-2375</issn><issn>2667-2375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EolXpHyDkJZsUP2InWaKqQKUiNmVtOfaYusqjjZ0Ff0_SFsRqHrp37uggdE_JghIqn_YL09UQdwtGWDqsSMHzKzRlUmYJ45m4_tdP0DyEPSGECcp5QW_RhBc5TQmTU3R876vo69bqCu88dLozO2-GwVQ6BO-GPvq2wa3Dy_V2lQQ4YqujxhYq34COELCv674BbKCqcIinlTZdGwI-Sb7GubE4-hB6CHfoxukqwPxSZ-jzZbVdviWbj9f18nmTGJpmeaKNLm1q8lxwcJCXljvNbGYhddQUJeXSlZozV2SGEyoYoRnPZGlSxqXImeQz9Hi-e-ja45AbVe3D-KNuoO2D4lRIwSQTozQ9S09fd-DUofO17r4VJWrkrfbqzFuNvNWZ92B7uCT0ZQ32z_RLl_8AG7x_Nw</recordid><startdate>20250105</startdate><enddate>20250105</enddate><creator>Caron, Daniel P</creator><creator>Specht, William L</creator><creator>Chen, David</creator><creator>Wells, Steven B</creator><creator>Szabo, Peter A</creator><creator>Jensen, Isaac J</creator><creator>Farber, Donna L</creator><creator>Sims, Peter A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3921-4837</orcidid></search><sort><creationdate>20250105</creationdate><title>Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues</title><author>Caron, Daniel P ; Specht, William L ; Chen, David ; Wells, Steven B ; Szabo, Peter A ; Jensen, Isaac J ; Farber, Donna L ; Sims, Peter A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1478-acabd4c8853efe8bd3fa2d7de4f1c9b136fba32f97c30152017376bc423658263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caron, Daniel P</creatorcontrib><creatorcontrib>Specht, William L</creatorcontrib><creatorcontrib>Chen, David</creatorcontrib><creatorcontrib>Wells, Steven B</creatorcontrib><creatorcontrib>Szabo, Peter A</creatorcontrib><creatorcontrib>Jensen, Isaac J</creatorcontrib><creatorcontrib>Farber, Donna L</creatorcontrib><creatorcontrib>Sims, Peter A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell reports methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caron, Daniel P</au><au>Specht, William L</au><au>Chen, David</au><au>Wells, Steven B</au><au>Szabo, Peter A</au><au>Jensen, Isaac J</au><au>Farber, Donna L</au><au>Sims, Peter A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues</atitle><jtitle>Cell reports methods</jtitle><addtitle>Cell Rep Methods</addtitle><date>2025-01-05</date><risdate>2025</risdate><spage>100938</spage><pages>100938-</pages><artnum>100938</artnum><issn>2667-2375</issn><eissn>2667-2375</eissn><abstract>Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins. Cellular indexing of transcriptomes and epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell-type annotation requires a classifier that integrates multimodal data. Here, we describe multimodal classifier hierarchy (MMoCHi), a marker-based approach for accurate cell-type classification across multiple single-cell modalities that does not rely on reference atlases. We benchmark MMoCHi using sorted T lymphocyte subsets and annotate a cross-tissue human immune cell dataset. MMoCHi outperforms leading transcriptome-based classifiers and multimodal unsupervised clustering in its ability to identify immune cell subsets that are not readily resolved and to reveal subset markers. MMoCHi is designed for adaptability and can integrate annotation of cell types and developmental states across diverse lineages, samples, or modalities.</abstract><cop>United States</cop><pmid>39814026</pmid><doi>10.1016/j.crmeth.2024.100938</doi><orcidid>https://orcid.org/0000-0002-3921-4837</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2667-2375 |
ispartof | Cell reports methods, 2025-01, p.100938, Article 100938 |
issn | 2667-2375 2667-2375 |
language | eng |
recordid | cdi_proquest_miscellaneous_3156526256 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
title | Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20hierarchical%20classification%20of%20CITE-seq%20data%20delineates%20immune%20cell%20states%20across%20lineages%20and%20tissues&rft.jtitle=Cell%20reports%20methods&rft.au=Caron,%20Daniel%20P&rft.date=2025-01-05&rft.spage=100938&rft.pages=100938-&rft.artnum=100938&rft.issn=2667-2375&rft.eissn=2667-2375&rft_id=info:doi/10.1016/j.crmeth.2024.100938&rft_dat=%3Cproquest_cross%3E3156526256%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3156526256&rft_id=info:pmid/39814026&rfr_iscdi=true |