Shear instability and coherent structures in shallow flow adjacent to a porous layer

Results are presented from an experimental study of shallow flow in a channel partially obstructed by an array of circular cylinders. The cylinder array is a model for emergent vegetation in an open channel, but also represents a simple sparse porous medium. A shear layer with regular vortex structu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2007-12, Vol.593, p.1-32
Hauptverfasser: WHITE, BRIAN L., NEPF, HEIDI M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue
container_start_page 1
container_title Journal of fluid mechanics
container_volume 593
creator WHITE, BRIAN L.
NEPF, HEIDI M.
description Results are presented from an experimental study of shallow flow in a channel partially obstructed by an array of circular cylinders. The cylinder array is a model for emergent vegetation in an open channel, but also represents a simple sparse porous medium. A shear layer with regular vortex structures forms at the edge of the array, evolving downstream to an equilibrium width and vortex size. The vortices induce nearly periodic oscillations with a frequency that matches the most unstable linear mode for a parallel shear flow. The shear layer is asymmetric about the array interface and has a two-layer structure. An inner region of maximum shear near the interface contains a velocity inflection point and establishes the penetration of momentum into the array. An outer region, resembling a boundary layer, forms in the main channel, and establishes the scale of the vortices. The vortex structure, educed by conditional sampling, shows strong crossflows with sweeps from the main channel and ejections from the array, which create significant momentum and mass fluxes across the interface. The sweeps maintain the coherent structures by enhancing shear and energy production at the interface. A linear stability analysis is consistent with the experimental results and demonstrates that the instability is excited by the differential drag between the channel and the array.
doi_str_mv 10.1017/S0022112007008415
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31551629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112007008415</cupid><sourcerecordid>1452287601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c603t-7dd9806e84c0e24a2c4bf8c5861fa358ab593f4a9ffb3169dcaf37587763ca1d3</originalsourceid><addsrcrecordid>eNqFkcGO0zAQhi0EEqXwANwsJLhlmYljJz6iFWxXLCC0y9maODZNSZNiO4K-PY5asRII4YN9-L8ZfeNh7DnCBQLWr28ByhKxBKgBmgrlA7bCSumiVpV8yFZLXCz5Y_Ykxh0ACtD1it3dbh0F3o8xUdsPfTpyGjtup60Lbkw8pjDbNAcXM8PjloZh-sH9clG3I7swaeLED1OY5sgHOrrwlD3yNET37Pyu2Zd3b-8uN8XNp6vryzc3hVUgUlF3nW5Auaay4MqKSlu1vrGyUehJyIZaqYWvSHvfClS6s-RFLZu6VsISdmLNXp36HsL0fXYxmX0frRsGGl2WMQKlRFXq_4IlSBSIKoMv_gB30xzGPIQpEZp88setGZ4gG6YYg_PmEPo9haNBMMs2zF_byDUvz40pWhp8oNH28b5QawBVLQLFietjcj9_5xS-GVXn4Y26-mw-NBsEeP_RbDIvzi60b0PffXX3xv-2-QXrPqcc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210888801</pqid></control><display><type>article</type><title>Shear instability and coherent structures in shallow flow adjacent to a porous layer</title><source>Cambridge Journals</source><creator>WHITE, BRIAN L. ; NEPF, HEIDI M.</creator><creatorcontrib>WHITE, BRIAN L. ; NEPF, HEIDI M.</creatorcontrib><description>Results are presented from an experimental study of shallow flow in a channel partially obstructed by an array of circular cylinders. The cylinder array is a model for emergent vegetation in an open channel, but also represents a simple sparse porous medium. A shear layer with regular vortex structures forms at the edge of the array, evolving downstream to an equilibrium width and vortex size. The vortices induce nearly periodic oscillations with a frequency that matches the most unstable linear mode for a parallel shear flow. The shear layer is asymmetric about the array interface and has a two-layer structure. An inner region of maximum shear near the interface contains a velocity inflection point and establishes the penetration of momentum into the array. An outer region, resembling a boundary layer, forms in the main channel, and establishes the scale of the vortices. The vortex structure, educed by conditional sampling, shows strong crossflows with sweeps from the main channel and ejections from the array, which create significant momentum and mass fluxes across the interface. The sweeps maintain the coherent structures by enhancing shear and energy production at the interface. A linear stability analysis is consistent with the experimental results and demonstrates that the instability is excited by the differential drag between the channel and the array.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112007008415</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary layers ; Emergent vegetation ; Environmental engineering ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic stability ; Instability of shear flows ; Oceanography ; Open channels ; Physics ; Porous media ; Shear loading ; Stability analysis</subject><ispartof>Journal of fluid mechanics, 2007-12, Vol.593, p.1-32</ispartof><rights>Copyright © Cambridge University Press 2007</rights><rights>2008 INIST-CNRS</rights><rights>Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c603t-7dd9806e84c0e24a2c4bf8c5861fa358ab593f4a9ffb3169dcaf37587763ca1d3</citedby><cites>FETCH-LOGICAL-c603t-7dd9806e84c0e24a2c4bf8c5861fa358ab593f4a9ffb3169dcaf37587763ca1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112007008415/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19900646$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>WHITE, BRIAN L.</creatorcontrib><creatorcontrib>NEPF, HEIDI M.</creatorcontrib><title>Shear instability and coherent structures in shallow flow adjacent to a porous layer</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Results are presented from an experimental study of shallow flow in a channel partially obstructed by an array of circular cylinders. The cylinder array is a model for emergent vegetation in an open channel, but also represents a simple sparse porous medium. A shear layer with regular vortex structures forms at the edge of the array, evolving downstream to an equilibrium width and vortex size. The vortices induce nearly periodic oscillations with a frequency that matches the most unstable linear mode for a parallel shear flow. The shear layer is asymmetric about the array interface and has a two-layer structure. An inner region of maximum shear near the interface contains a velocity inflection point and establishes the penetration of momentum into the array. An outer region, resembling a boundary layer, forms in the main channel, and establishes the scale of the vortices. The vortex structure, educed by conditional sampling, shows strong crossflows with sweeps from the main channel and ejections from the array, which create significant momentum and mass fluxes across the interface. The sweeps maintain the coherent structures by enhancing shear and energy production at the interface. A linear stability analysis is consistent with the experimental results and demonstrates that the instability is excited by the differential drag between the channel and the array.</description><subject>Boundary layers</subject><subject>Emergent vegetation</subject><subject>Environmental engineering</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic stability</subject><subject>Instability of shear flows</subject><subject>Oceanography</subject><subject>Open channels</subject><subject>Physics</subject><subject>Porous media</subject><subject>Shear loading</subject><subject>Stability analysis</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkcGO0zAQhi0EEqXwANwsJLhlmYljJz6iFWxXLCC0y9maODZNSZNiO4K-PY5asRII4YN9-L8ZfeNh7DnCBQLWr28ByhKxBKgBmgrlA7bCSumiVpV8yFZLXCz5Y_Ykxh0ACtD1it3dbh0F3o8xUdsPfTpyGjtup60Lbkw8pjDbNAcXM8PjloZh-sH9clG3I7swaeLED1OY5sgHOrrwlD3yNET37Pyu2Zd3b-8uN8XNp6vryzc3hVUgUlF3nW5Auaay4MqKSlu1vrGyUehJyIZaqYWvSHvfClS6s-RFLZu6VsISdmLNXp36HsL0fXYxmX0frRsGGl2WMQKlRFXq_4IlSBSIKoMv_gB30xzGPIQpEZp88setGZ4gG6YYg_PmEPo9haNBMMs2zF_byDUvz40pWhp8oNH28b5QawBVLQLFietjcj9_5xS-GVXn4Y26-mw-NBsEeP_RbDIvzi60b0PffXX3xv-2-QXrPqcc</recordid><startdate>20071225</startdate><enddate>20071225</enddate><creator>WHITE, BRIAN L.</creator><creator>NEPF, HEIDI M.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20071225</creationdate><title>Shear instability and coherent structures in shallow flow adjacent to a porous layer</title><author>WHITE, BRIAN L. ; NEPF, HEIDI M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c603t-7dd9806e84c0e24a2c4bf8c5861fa358ab593f4a9ffb3169dcaf37587763ca1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Boundary layers</topic><topic>Emergent vegetation</topic><topic>Environmental engineering</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic stability</topic><topic>Instability of shear flows</topic><topic>Oceanography</topic><topic>Open channels</topic><topic>Physics</topic><topic>Porous media</topic><topic>Shear loading</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WHITE, BRIAN L.</creatorcontrib><creatorcontrib>NEPF, HEIDI M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WHITE, BRIAN L.</au><au>NEPF, HEIDI M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear instability and coherent structures in shallow flow adjacent to a porous layer</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2007-12-25</date><risdate>2007</risdate><volume>593</volume><spage>1</spage><epage>32</epage><pages>1-32</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Results are presented from an experimental study of shallow flow in a channel partially obstructed by an array of circular cylinders. The cylinder array is a model for emergent vegetation in an open channel, but also represents a simple sparse porous medium. A shear layer with regular vortex structures forms at the edge of the array, evolving downstream to an equilibrium width and vortex size. The vortices induce nearly periodic oscillations with a frequency that matches the most unstable linear mode for a parallel shear flow. The shear layer is asymmetric about the array interface and has a two-layer structure. An inner region of maximum shear near the interface contains a velocity inflection point and establishes the penetration of momentum into the array. An outer region, resembling a boundary layer, forms in the main channel, and establishes the scale of the vortices. The vortex structure, educed by conditional sampling, shows strong crossflows with sweeps from the main channel and ejections from the array, which create significant momentum and mass fluxes across the interface. The sweeps maintain the coherent structures by enhancing shear and energy production at the interface. A linear stability analysis is consistent with the experimental results and demonstrates that the instability is excited by the differential drag between the channel and the array.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112007008415</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2007-12, Vol.593, p.1-32
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_31551629
source Cambridge Journals
subjects Boundary layers
Emergent vegetation
Environmental engineering
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Hydrodynamic stability
Instability of shear flows
Oceanography
Open channels
Physics
Porous media
Shear loading
Stability analysis
title Shear instability and coherent structures in shallow flow adjacent to a porous layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A18%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear%20instability%20and%20coherent%20structures%20in%20shallow%20flow%20adjacent%20to%20a%20porous%20layer&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=WHITE,%20BRIAN%20L.&rft.date=2007-12-25&rft.volume=593&rft.spage=1&rft.epage=32&rft.pages=1-32&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112007008415&rft_dat=%3Cproquest_cross%3E1452287601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210888801&rft_id=info:pmid/&rft_cupid=10_1017_S0022112007008415&rfr_iscdi=true